
Genetic Optimisation of
Structural Systems

Author:
GAVIN S. REYNOLDS

Supervisor:
DR. CHRIS PEARCE

A thesis submitted in partial fulfilment of the requirements
for the degree of

BEng Civil Engineering

DEPARTMENT OF CIVIL ENGINEERING

THE UNIVERSITY OF GLASGOW

March 2009

©Gavin S. Reynolds 2009

Abstract

This work summarises the development of a Genetic Algorithm and its use in an
investigation into the optimisation of structural systems. The Genetic Algorithm de-
tailed in this work was implemented from scratch by the author in MATLAB.

An optimisation approach to structures is the inverse of more conventional structural
design approaches. For example, considering a truss system, a conventional ap-
proach would be to design the structure, analyse it under given loads and manually
redesign if design requirements were violated. An optimisation approach inverts this,
by instead allowing the designer to pose the question “what should the design be,
in order to optimally satisfy the requirements placed upon the structure?”.

Many optimisation methods operate in a point to point fashion, evaluating a single
point and then using some method or rule to determine the next point to be eva-
luated, thereby hopefully moving closer to the optimal solution with each iteration.
This method is particularly prone to locating local optima. Genetic Algorithms (GAs)
work with a population of diverse points simultaneously, increasing the likelihood of
locating the global optimum of a given function. GAs are a heuristic global optimi-
sation technique which draw inspiration from evolutionary biology and the Darwinian
principle of Survival of the Fittest. By assigning an objective fitness value to each
member of a population, fit individuals can be identified and used to evolve even
fitter solutions. GAs use mechanisms similar to those which exist in evolutionary bio-
logy such as reproduction, inheritance, selection, crossover and mutation in order to
evolve the optimum solution to a problem.

This report describes the theory and development of a GA. The generic nature of the
Genetic Algorithm developed in this work enables it to be applied to new problems
with minimal extra development. The application of the GA to the optimisation of two
structural problems is presented herein: a steel truss system and a simply supported
reinforced concrete beam. The effects of the genetic mechanisms in optimisation
were investigated as well as the roles of the fitness evaluation functions. This work
shows that Genetic Algorithms are a robust and efficient method for optimisation
through their ability to quickly identify optimum solutions to a given problem.

1

Acknowledgements

I would like to thank Chris Pearce for his constant support, direction and enthusiasm
throughout this project. His guidance & ideas challenged me to strive further in the
development of this work.

This thesis is typeset using open source software: the LYX document processor and
the LATEX 2ε document markup language for the TEX typesetting system.

2

Contents Contents

Contents

I Introduction 9

1 Genetic Algorithms . 11

1.1 Crossover . 12

1.2 Mutation . 13

2 Development Software . 13

2.1 MATLAB . 13

2.2 CALFEM . 14

3 Objectives . 15

II Development 16

4 The Genetic Algorithm . 16

4.1 Encoding . 18

4.1.1 Discrete Variables . 19

4.1.2 Continuous Variables . 20

4.2 Fitness Functions . 21

4.3 Selection . 22

4.4 Termination Conditions . 24

4.5 Expanded GA Flowchart . 24

5 Ten Bar Truss . 26

5.1 Fitness Function . 27

5.1.1 Weight Fitness . 28

5.1.2 Displacement Fitness . 28

5.1.3 Stress Fitness . 29

5.1.4 Element Force Fitness . 30

5.2 CALFEM Solver . 30

6 Reinforced Concrete Beam . 31

6.1 Fitness Function . 32

6.2 CALFEM Solver . 35

7 Graphical User Interface . 35

7.1 Flexibility of Input . 36

3

Contents Contents

III Results 39

8 Effect of Genetic Algorithm Parameters 39

8.1 Population Size . 40

8.2 Mutation . 40

8.3 Elitism . 41

8.3.1 Mutation of Elites . 43

9 Ten Bar Truss Results . 44

9.1 Fitness Function Testing . 44

9.2 Search Space . 47

10 Simply Supported Beam Results . 49

10.1 Fitness Function Testing . 49

10.2 Search Space . 50

IV Discussion & Conclusions 52

11 Discussion . 52

12 Conclusions . 54

12.1 Detailed Conclusions . 54

12.2 General Conclusions . 55

12.3 Future perspectives . 56

V References 58

References . 58

VI Appendices 59

A Annotated GA Flowchart . 59

B Ten Bar Truss weight fitness calculation 60

C Typical Visualisations . 61

C.1 Truss . 61

C.2 Beam . 63

D GA MATLAB Code . 65

D.1 /ga/GA_Controller.m . 66

D.2 /ga/GA_Crossover.m . 70

D.3 /ga/GA_Mutation.m . 72

D.4 /ga/GA_Elitism.m . 73

4

Contents Contents

D.5 /ga/GA_SelectionRouletteWheel.m . 74

E Problem Specific MATLAB Code . 75

E.1 Ten Bar Truss . 76

E.1.1 /fitness/fitness_Truss.m . 76

E.1.2 /solvers/solver_CALFEMtruss.m 78

E.1.3 /includes/getCALFEMtruss_geometry.m 80

E.1.4 /includes/getCALFEMtruss_sectionProperties.m 81

E.2 Simply Supported Beam . 83

E.2.1 /fitness/fitness_Beam.m . 83

E.2.2 /solvers/solver_CALFEMbeam.m 85

E.2.3 /includes/getCALFEMbeam_sectionProperties.m 87

E.2.4 /includes/getCALFEMbeam_reinforcement.m 88

F Misc. MATLAB Code . 90

F.1 Figures . 90

F.1.1 /figures/create_FitnessGraph.m 90

F.1.2 /figures/create_TrussDiagram.m 92

F.1.3 /figures/create_BeamDiagram.m 94

F.2 Search Space Mapping . 95

F.2.1 /test/fitnessMap.m . 95

5

LIST OF ALGORITHMS LIST OF ALGORITHMS

List of Algorithms

1 Basic Genetic Algorithm Pseudo-code 17
2 Roulette Wheel Selection Pseudo-code 22
3 Displacement Fitness . 28
4 Ten Bar Truss Yielding Fitness . 29
5 Ten Bar Truss solver pseudo-code . 31
6 Beam Reinforcement calculations pseudo-code 34
7 Re-bar Selection pseudo-code . 34

6

List of Figures List of Figures

List of Figures

1 GA Flowchart . 17

2 Weighted Roulette Wheel . 23

3 Full Flowchart . 25

4 Ten Bar Truss diagram . 26

5 Genetic Algorithm GUI . 36

6 Truss Parameter GUI . 37

7 Truss with loads of 1000kN, 1000kN 37

8 Truss with loads of 100kN, 100kN . 37

9 Beam Parameter GUI . 38

10 Fitness graph over iterations (without Elitism) 42

11 Fitness graph over iterations (with Elitism) 42

12 Optimum truss design for weight only 45

13 Optimum truss design for weight & displacement 45

14 Optimum truss design for weight & buckling 46

15 Second-most optimum truss design for complete fitness function . . . 46

16 Truss search space map (sorted by individual number) 48

17 Truss search space map (sorted by fitness value) 48

18 Optimum beam design for complete fitness function 50

19 Beam search space map (sorted by individual number) 50

20 Beam search space map (sorted by fitness value) 51

21 Annotated GA Flowchart . 59

22 Truss FEM Visualisation . 61

23 Truss Fitness Graph over Iterations . 61

24 Truss Final Design Visualisation . 62

25 Beam FEM Visualisation . 63

26 Beam Fitness Graph over Iterations 63

27 Beam Final Design Visualisation . 64

7

List of Tables List of Tables

List of Tables

1 Ten Bar Truss Section Properties . 27

2 Effect of Population Size . 40

3 Effect of Mutation . 41

4 Effect of Elitism . 42

5 Effect of Mutation of Elites . 43

8

Part I. Introduction

In applied mathematics, optimisation is the process of finding the maxima or minima
of a given function, within a domain of acceptable input values. Optimisation has a
long history and many techniques exist, such as simple Gauss gradient descent to
more complicated techniques like Newton-Raphson and Sequential quadratic pro-
gramming. Such techniques are greatly used in areas such as mathematics, applied
sciences, economics and operational research.

An optimisation approach to structures is the inverse of more conventional structu-
ral design approaches. For example, considering a truss system, a conventional
approach would be to design the structure, analyse it under given loads (for the
deflections, stresses and moments) and manually redesign if design requirements,
such as maximum deflection, were violated. An optimisation approach inverts this,
by asking “what should the design be to optimally satisfy the requirements placed
upon the structure?”.

Rarely in structural engineering is a problem unconstrained by requirements. Again
consider a structural design problem, such as minimising the weight of a truss. An
unconstrained optimisation would result in a truss with the lightest members avai-
lable, with no consideration given to the ability of the structure to support itself or
carry loads. However, typically the objective of structural design is to find the most
economical (the cheapest and therefore generally lightest) structure which is both
safe & serviceable. This can be achieved by applying constraints to an optimisation,
such as limiting overall deflection and stresses in members. The nature of any optimi-
sation technique used for structural problems must cater for four main requirements
[1]. The technique should:

1. be easily extended to optimise real structural design problems, as opposed to
formulated benchmark problems;

2. use a minimum of auxiliary information to find an optimum solution - such as
function derivatives - and preferably none at all;

3. attempt to find the global optimum and avoid local optima;

4. be able to solve problems with discrete variables.

Most classical mathematical programming techniques require auxiliary information
such as the first derivative of a given function in order to find optima. Therefore such
techniques cannot be used for functions which cannot be differentiated. These tech-
niques are also essentially mathematical hill climbers and often tend to find local op-
tima rather than global optima. Additionally many of these mathematical techniques
require the search space to be continuous. They also require an equation to model
a problem which is often impossible to formulate, especially in the case of discrete
variables with complicated variable interaction. Hence for a problem which cannot
be differentiated, with many local optima, or discrete variables - or indeed all three of
these characteristics - traditional mathematical optimisation cannot be applied.

Finding a local optimum is relatively easy; however, finding global optima is more
challenging. A simple, but highly inefficient technique, would be to evaluate the func-
tion at every available point - a process that may take some considerable time. Alter-
natively, the function could be evaluated at certain intervals or sampled at random,

9

however there is no guarantee of finding the global optimum with such an approach -
especially in rapidly changing or chaotic functions. Many optimisation methods ope-
rate in this fashion, evaluating a single point and then using some method or rule to
determine the next point to be evaluated. This point to point method is particularly
prone to locating local optima.

For this reason a branch of applied numerical analysis called Global Optimisation
has been developed to solve such problems. Within Global Optimisation there are
a large number of search techniques which fall into several categories: determinis-
tic, stochastic and heuristic. However the most powerful global search techniques
use primary knowledge of the search space to inform their search i.e. heuristics.
Genetic Algorithms, a global search heuristic technique, have been chosen for in-
vestigation in this paper as they not only satisfy the four requirements above they are
also computationally simple, relatively easy to implement but exceptionally robust &
powerful in their search for global optima. Genetic Algorithms do not work on a point
to point basis, but operate instead on a set of points (known as a population) simul-
taneously. This reduces the likelihood of locating a local optima and by working on a
population of diverse points, the Genetic Algorithm adheres to the adage that there
is “safety in numbers”. This in part contributes to the robust & powerful nature of a
Genetic Algorithm, as well as its inherent parallelism - by working on many solutions
simultaneously [2, 3].

10

1 GENETIC ALGORITHMS

1 Genetic Algorithms

In Biology, evolution is the process by which a species improves itself over gene-
rations. At the most basic level, offspring inherit genetic traits from their parents
in processes associated with reproduction. The genetic makeup of an individual of
a species is stored in its DNA and it consists of a sequence of molecules - called
bases - attached to double helix of long polymers, which provide its structure. Each
base can be one of four types, which conventionally labelled A,C, G and T - and are
stored in pairs at opposite positions on the double helix. At a simple level DNA can
be thought of as a string which encodes complicated information using a long string
consisting of pairs of these four types. To give an example of the length of a DNA
string, human DNA is of the order of 3 billion base pairs.

During reproduction, an offspring’s genes are created from the DNA of its parents via
a combination of genetic crossover and mutation. Crossover combines the genetic
material of the two parents and mutation introduces random variations in the genes
of the offspring. Mutation introduces a random element of change into evolution
and creates variation in the gene pool by introducing new novel genetic features by
slightly modifying the DNA, which may or may not improve the fitness of an individual.
If any resulting change from either crossover or mutation does improve the fitness
of an individual, then they are more likely to survive to reproduce and consequently
pass its DNA onto its offspring. The process of selection, in the form of survival of
the fittest, ensures that genetic traits which improve fitness are more likely to survive
to the next generation, whereas those which are ineffective or harmful are less likely
to.

Genetic Algorithms are a global search method using evolutionary algorithms and
are a subset of evolutionary computation, which is in turn a sub-field of artificial
intelligence research. Evolutionary algorithms are inspired by evolutionary biology
and Darwinian principles such as Survival of the Fittest. They use mechanisms
similar to those which exist in biology such as reproduction, inheritance, selection,
crossover and mutation in order to find the optimum solution to a problem. They
require no auxiliary knowledge such as derivatives or other gradient information and
are suited to solving problems involving discrete variables & many local optima.

The concept of GAs was originally developed by John Holland, of the University
of Michigan, in the 1970s in the seminal book “Adaption in Natural and Artificial
Systems” . Holland drew inspiration from the robustness, efficacy and efficiency of
the natural processes. He believed that reproducing such processes would produce
a technique for solving difficult problems in a robust manner [4, 2].

GAs differ in fundamental ways from other optimisation and search methods [5]:

1. GAs work with an abstract representation of the problem parameters, not the
parameters themselves (i.e. a coding of the parameters).

2. GAs search from a population of solutions, alternatively called individuals or
chromosomes.

3. GAs use an objective fitness function to drive the optimisation, rather than other
auxiliary information such as derivatives.

4. GAs use stochastic - as opposed to deterministic - methods. However they are
not random searches - they use random probabilistic choice as a tool to guide
the optimisation process.

11

1.1 Crossover 1 GENETIC ALGORITHMS

In his “Handbook of Genetic Algorithms” [2], Davis remarked that:

"Evolution is a process that operates on chromosomes rather than on the
living beings they encode."

Evolution operates blindly using elementary operations to manipulate the genetic ma-
terial of a chromosome, to achieve exceptionally complicated life. Genetic Algorithms
operate on a similar principle, using simple encoding and reproduction processes to
achieve sophisticated behaviour.

Biological evolution is infinitely more complex than that modelled in a Genetic Al-
gorithm. However, at least to some extent, genetic operations such as crossover,
mutation and reproduction follow their biological counterparts. As stated, DNA uses
a quaternary alphabet (A, C, G, T) to encode the instructions used to create living
organisms. At this juncture, it is necessary to accept that Genetic Algorithms also
work on the basis of codings, the simplest of which - and easiest to understand - is
binary encoding. There are a number of other encodings used with GAs - which are
less obvious - and these will be discussed later in Section 4.1 on page 18 [2, 6].

1.1 Crossover

Biological crossover, or recombination, is a process by which two chromosomes fuse
together at a random point and then split at the join, exchanging their DNA by swap-
ping the corresponding sections of material after the join. This results in two new
chromosomes which differ from their parents. In genetics this occurs during meosis
- the process by which cells divide.

GAs implement an operation which is analogous to the biological process. Pairs
of chromosomes are selected at random from the mating pool and for each pair of
strings, a random crossover point is selected. The mating pool for the next generation
is selected from the current generation with the aid of the objective evaluation of the
fitness of the members of that generation. The concepts of Fitness and Selection
are covered in Sections 4.2 on page 21 and respectively.

A simple one-point crossover example is presented below.

Consider two binary chromosomes of 10 bits. (l = 10)
Chromosome A: 1111010111
Chromosome B: 0011111000
Select a random number between 1 and (l − 1). Say l = 6. The crossover
point is denoted by the pipe symbol (|).
Chromosome A: 111101 | 0111
Chromosome B: 001111 | 1000
The resulting crossed over chromosomes are shown below.
Chromosome AB: 1111011000
Chromosome BA: 0011110111

The resulting hybrid chromosomes will replace their parents in the population. Through
a combination of crossover and survival of the fittest (otherwise known as Selection in

12

1.2 Mutation 2 DEVELOPMENT SOFTWARE

a GA) as each generation passes, the total fitness of a population will trend upwards,
as selection will favour fitter chromosomes. However, with selection and crossover
there will come a point where no further improvement in the total fitness of a popu-
lation is possible. Nevertheless, this does not imply that the optimum solution has
been found.

Survival of the fittest and crossover on their own will tend to cause the population to
become homogeneous over time. This is because there is no mechanism to create
new novel genetic features. The genetic features (i.e. binary bits) present in a popu-
lation after a number of generations will only be composed of those which existed in
the initial population. It is possible that one or several highly fit individuals could pre-
dominate causing crossover to be ineffective and produce no change. For example,
crossing a pair of similar chromosomes may have very little effect and will certainly
have no effect at all if both parents are the same (since any crossover will simply
swap identical bits).

1.2 Mutation

To overcome the limitations of crossover an additional mechanism for change is re-
quired. In Biology, alterations to the gene sequence of an organism are caused by
a number of factors, including errors in cell division and electromagnetic radiation.
Despite the seemingly accidental nature of mutation, it can provide new genetic traits,
which reproduce if they are advantageous to the species (or are lost if they are not).

In Genetic Algorithms, mutation is required since, although crossover and selection
effectively recombine existing genetic traits, they do not protect potentially useful
genetic material from being lost (i.e. individual bits at particular positions). Nor can
they introduce new novel features into the gene pool i.e. genetic material which did
not exist in the original population. Mutation is generally implemented as a probability
that a given random binary bit in the genetic sequence will be inverted i.e. from 0 to
1 and vice versa.

It is noteworthy that mutation by itself provides no advantage over a random search.
However, when combined with crossover and selection, it ensures that genetic di-
versity is maintained within the mating pool to avoid a homogeneous population.
Consequently, mutation plays a secondary role in Genetic Algorithms[2].

2 Development Software

2.1 MATLAB

MATLAB, a contraction of “Matrix Laboratory”, is a cross-platform numerical & tech-
nical computing environment written in C and is a proprietary commercial product of
The Mathworks, Inc.

The Mathworks website describes MATLAB as:

”. . . a high-level technical computing language and interactive environ-
ment for algorithm development, data visualisation, data analysis, and

13

2.2 CALFEM 2 DEVELOPMENT SOFTWARE

numeric computation. Using the MATLAB product, you can solve tech-
nical computing problems faster than with traditional programming lan-
guages, such as C, C++, and Fortran... This is because MATLAB offers
capabilities such as matrix-based programming, advanced mathematical
functions, and a simplified, flexible language that lets you focus more on
solving problems and less on programming.” [7]

It provides a high level base upon which engineers, scientists and mathematicians
can rapidly develop algorithms and programs. Traditional programming training or
knowledge of the workings of computer systems - although preferable - is not requi-
red. In common with all high level programming languages, there is strong level of
abstraction from the technical details of the computer platform in use. Many mathe-
matical functions are inbuilt, reducing the need to reinvent the wheel to implement
common or advanced mathematical functionality. Additionally, MATLAB provides bet-
ter handling of vectors, matrices, multi-dimensional arrays as well as other mathe-
matical concepts than other general programming languages.

However, there a number of disadvantages to using MATLAB. It is a proprietary com-
mercial product and as such is subject to hefty fees & restrictive licensing. (However,
there is a freely available GNU General Public License - i.e. open source software
- alternative named Octave that is mostly compatible with MATLAB’s programming
language M-code).

Additionally, unlike other programming languages where code executing on two dif-
ferent machines would reasonably be expected to execute in a similar manner, there
is a level of ambiguity in MATLAB. This is due to its lack of a modern package archi-
tecture and reliance on the user setting the correct path. All functions share the same
global name-space and it uses the definition of the users path to resolve conflicts bet-
ween identically named functions. MATLAB is also an interpreted - as opposed to
compiled - language and poor programming practises or inefficient code will inevita-
bly cause slow performance - more so than with most modern compiled languages.

2.2 CALFEM

A common method for structural analysis is Finite Element Modelling. As this paper is
concerned with the optimisation of structural systems, a method of structural analysis
was required to inform the objective numerical evaluation made of an individual by
the fitness function. See the section on Fitness Functions (section 4.2 on page 21)
for further details.

Rather than reinventing the wheel and creating custom structural analysis solvers
from scratch, off-the-shelf finite element modelling software was required. As the
programming language used in this work is MATLAB, a compatible (or at least inter-
faceable) FEM program was required and for this purpose software called CALFEM
was selected. CALFEM is a finite element toolbox written in MATLAB developed at
the Division of Structural Mechanics, Lund University, Sweden [8].

"CALFEM is an interactive computer program for teaching the finite ele-
ment method (FEM). The name CALFEM is an abbreviation of “Computer
Aided Learning of the Finite Element Method”. The program can be used
for different types of structural mechanics problems and field problems."

14

3 OBJECTIVES

Whilst the use of an FEM package with an API (Application Programming Interface),
such as Strand7, would have been possible, the use of a natively written MATLAB
toolbox was chosen as this vastly simplifies programming. By using a fully MATLAB
solution there are no outside dependencies (i.e. on other software) therefore the
program only requires MATLAB to run..

3 Objectives

”Genetic algorithms for optimisation of structural systems.”

The purpose of this work is to develop a Genetic Algorithm for use in an investigation
into the optimisation of structural systems. The primary objectives of this paper are:

• the development of a bespoke problem independent Genetic Algorithm using
MATLAB.

• the development of problem specific code to allow the developed Genetic Al-
gorithm to solve benchmark, proof of concept problems.

• to investigate and evaluate the appropriateness of using Genetic Algorithms for
optimisation of structural systems.

To facilitate this investigation, two problems were considered: a ten bar truss and
a simply supported reinforced concrete beam. These two different problems were
selected to enable investigation into a wide range of aspects:

• the performance of Genetic Algorithms in the optimisation of different problems;

• the effect of the parameters of a Genetic Algorithm on the optimisation process:
performance, efficiency and efficacy;

• and the ability of Genetic Algorithms to optimise different problem types.

Through evaluation of the results, the effectiveness of Genetic Algorithms for the
optimisation of structural systems can be commented upon.

Additionally, the question is posed as to whether Genetic Algorithms could be ge-
nuinely useful to an engineer and form part of their design toolbox - similar to the
invaluable contribution Finite Element Modelling has made to modern engineering.

The principle points for investigation are annotated on a full Genetic Algorithm flow-
chart in Appendix A on page 59. In Part II the development of the GA is split into its
logical components and the investigative points related to its design are discussed,
such as how to encode a problem and how to evaluate the fitness of a given solution.
In Part III on page 39 the effect of the parameters of a Genetic Algorithm and the
design of Fitness Functions on the optimisation process are examined.

15

4 THE GENETIC ALGORITHM

Part II. Development

4 The Genetic Algorithm

Genetic Algorithms have a relatively long history in computing terms - almost as
long as the microprocessor and UNIX. Although Evolutionary Algorithms date back
to the mid 1950’s, Genetic Algorithms were not invented until the mid 1970’s by John
Holland.

GAs remained largely a theoretical academic research interest until the late 1980s
when the first genetic algorithms were used for industrial purposes. Today there
are many implementations, in the form of standalone programs as well as numerous
libraries in many programming languages.

At a particularly high level, genetic algorithm can be characterised into two pro-
cesses: the initial generation of a random population and the improvement of that
population. The improvement of the population takes place through reproduction -
the process of breeding a fitter generation. This involves evaluation, selection and
genetic operations such as crossover & mutation.

The classic high level pseudo-code and flowchart for GAs is presented in Algorithm
1 and Figure 1.

The Genetic Algorithm upon which this paper is based was entirely self-developed
from scratch and with no reference to existing implementations or code. It was deve-
loped in MATLAB M-code by the author, without programming assistance, based on
the classic high level pseudo-code for GAs.

The implementation of a Genetic Algorithm in this paper is intentionally problem ag-
nostic and modular. This ensures that the algorithm can be applied to any problem,
as well as being easier to develop & maintain. It is split into a number of procedural
functions along logical lines: one overall controller and functions for each genetic
operator. All relevant GA source code is provided in Appendix D on page 65.

• GA_Controller: The main function implementing the standard Genetic Algo-
rithm pseudo-code, controlling all aspects of program.

• GA_Crossover: An implementation of Genetic Crossover, producing offspring
from two parents by randomly selecting a crossover point and swapping the
parents bit-strings from this point.

• GA_Mutation: An implementation of Genetic Mutation, randomly inverting a
specified percentage of bits in the population of individuals.

• GA_Elitism: Selects a specified percentage of the fittest individuals to preserve
for the next generation.

• GA_SelectionRouletteWheel: Uses the roulette wheel selection paradigm to
select individuals from population.

A Genetic Algorithm - with its operators of crossover, mutation, selection etc - is
generic procedural code and is independent of the problem domain. However, at this
point Genetic Algorithms may seem entirely inapplicable to real engineering design,

16

4 THE GENETIC ALGORITHM

Algorithm 1 Basic Genetic Algorithm Pseudo-code

1. Generate initial random population

2. Evaluate the fitness of each individual of the population

3. Repeat the following until termination

(a) Select best ranked individuals to reproduce

(b) Breed new generation via genetic operations (e.g. crossover & mutation)

(c) Evaluate the fitness of each individual of the new population

Fig. 1: GA Flowchart

17

4.1 Encoding 4 THE GENETIC ALGORITHM

more concerned with the manipulation of strings than the optimisation of structural
systems.

In the words of Dr. Charlie Ellis of the University of Plymouth:

”Whilst all this makes an incontrovertibly splendid party trick, it might
seem to be rather far removed from the use of GAs for solving real pro-
blems.” [9]

Nevertheless, it is relatively trivial to use a genetic algorithm to solve a specific pro-
blem. Two critical problem dependent requirements must be satisfied to apply a GA
to a problem: encodability and evaluability. The first requirement, encodability, im-
plies that each design can be uniquely represented by a coding scheme; the second
requirement, evaluability, implies that the relative fitness of an individual can be
represented by an objective numerical value. In a Genetic Algorithm these requi-
rements are implemented respectively in the Encoding and Fitness Functions for a
given problem. The evaluation of the fitness of an individual is then used to influence
the genetic reproductive process, i.e. the method of selection [9, 4].

The concepts below are discussed in the following sections:

• encoding a problem,

• evaluating a potential solution to a problem using fitness functions,

• selection of the fittest solutions

• and the termination of the optimisation process.

4.1 Encoding

One of the major stumbling blocks for the use of Genetic Algorithm is the need to
genetically encode the search space so that the GA can use them. Each indivi-
dual chromosome, or design in the case of structural optimisation,should represent
a unique solution to the problem. These chromosomes will later be decoded and
evaluated using the fitness function.

There are a number of schemes which can be used to provide a genetic represen-
tation of solutions in a problem domain and these fall into two rough categories:
abstract encoding or direct encoding.

Using abstract binary encoding, a string consisting of binary 1 or 0 bits is used
to represent a solution. This is a flexible encoding as it can be used to represent
whether a particular characteristic is present (i.e. 1 for true, 0 for false), to represent
an integer number in binary notation (i.e. 1001 for 12) or a character in binary no-
tation (i.e. 01000001 for A, in 8-bit ASCII). These methods can be combined as
needed into one bit-string. To decode a binary string into the original values, the
string is simply parsed according to the number of bits used to represent each value
and converted to their original form. Using binary encoding also simplifies genetic
operations as Crossover & Mutation operations only need to be designed to handle
binary bit-strings. Whilst binary bit-strings as a method is not problem dependent,
the length of the bit-string required to represent a solution for a particular problem is.

18

4.1 Encoding 4 THE GENETIC ALGORITHM

This is due to the different number of variables required to be encoded to represent
a solution for different problems.

Chromosome A: 10000101011110
Chromosome B: 10000100010001

One form of direct encoding is value encoding. This is often used when binary
encoding is restrictive such as representing non-integer values such as real numbers
or other complicated data structures. However a major hurdle with value encoding is
that encoding specific genetic operations need to be designed to allow crossover &
mutation of solutions.

Chromosome A: B D E 9.920 8.553 22.250 F
Chromosome B: A B C 1.250 1.256 12.001 G

A second form of direct encoding - permutation encoding - is only applicable to
ordering problems, such as the Travelling Salesman Problem (TSP). TSP is a ma-
thematical problem studied in theoretical computer science where the objective is to
find the shortest route which visits a number of cities exactly once. Therefore, for
ordering problems, it is more practical to use the sequence itself than encoding to a
different form such as binary. In the example below, two possible solutions to an 8
city TSP problem are presented, i.e. the order in which the salesman visits the cities.

Chromosome A: 1 5 6 8 3 4 2 7
Chromosome B: 5 2 3 7 4 1 6 8

For the Genetic Algorithm developed in this paper binary encoding was chosen by
the author for a number of reasons: it is easier to implement from a programming
point of view, more obvious to the layperson for demonstration purposes and problem
independent - ensuring that the base Genetic Algorithm is also problem domain in-
dependent. However, to re-factor the Genetic Algorithm program presented in this
thesis to use a different encoding would be relatively straight forward by moving out
encoding dependent code to separate functions. These modularised encoding func-
tions could then be called to encode/decode solutions dependent on the encoding
being used.

4.1.1 Discrete Variables

For problems using discrete variables - for example steel sections which are only
manufactured in discrete section sizes - one option would be to encode the values
associated with a particularly section (such as cross-sectional area, second moment
of area, radius of gyration etc). However, a more practical method would be to main-
tain a table of cross-sectional values and encode a pointer - a position in the table - in
each chromosome. An example of encoding discrete variables can be found below.

A two element structure, with four possible cross-sections.

Section A I r
1 4.53 11.6 1.6
2 11.2 172 3.93
3 25.7 856 5.78
4 33.6 1928 7.57

19

4.1 Encoding 4 THE GENETIC ALGORITHM

Assuming binary bit-string encoding.

⇒To encode 4 possibilities in binary, 2 bits are required (binary 00 to 11 = decimal 0
to 3 = 4 possibilities)

⇒To represent 2 sets of 4 possibilities, 2 sets of 2 bits are required = 4 bits

⇒Therefore, to obtain a section in the table for the first element, parse the first two
bits as binary and add 1. e.g. binary 00 = decimal 0 + 1 = Section 1

Given two chromosomes:

Chromosome A: 0010
Chromosome B: 1101

Chromosome A:⇒ 00 10
i.e. 00 = Section 1 & 10 = Section 3

Chromosome B:⇒11 01
i.e. 11 = Section 4 & 01 = Section 2

⇒To obtain the cross-sectional values for each element, look-up table e.g.
To find the section properties for the first element of Chromosome B, look-up Section
4 in the table:

⇒A = 33.6, I = 1928, r = 7.57

4.1.2 Continuous Variables

To genetically encode continuous or real variables consideration must be given to
discretisation. A Genetic Algorithm can only approximately represent continuous
variables and a resolution (or tolerance) must be defined by the programmer. For
example, if a genetic algorithm involved representing a continuous dimension such
as a diameter, the permissible values range from 0 to infinity. However in practise
this range can be reduced by considering minimum and maximum values. Hence, if
it was decided by the designer that the permissible diameters lay in the range of 0 to
5m, then this would be more practical to encode. However, the designer must also
define a resolution to be applied to the range. This allows a continuous variable to
be represented in an equivalent discrete manner, which is easier to represent.

For example, if the minimum tolerance of the construction process was 10mm, then
it would be reasonable to discretise the range into 500 steps (i.e. 5000mm÷ 10mm).
If binary encoding was to be used, a minimum of 9 binary bits would be required to
represent the range (9 binary bits = 512 values). Thus, the binary bit-string ranges
from 000000000 to 111111111. To obtain the diameter associated with a bit-string of
0000011111, convert to the binary to decimal (31), therefore 31 × 10mm = 310mm.
As nine binary bits provides for 512 values and only 500 are required, there are 12
superfluous values. The designer could either decide to force these to be invalid
solutions or to resolve to the same value as that of the upper limit (i.e. 5000mm).

20

4.2 Fitness Functions 4 THE GENETIC ALGORITHM

4.2 Fitness Functions

The role of the fitness function in a Genetic Algorithm is to provide a measure of the
quality of a solution, defined with respect to the other members of the population.
By evaluating the fitness of each member of the population, the fittest solutions in
a particular generation can be selected to form the genetic basis of the succeeding
generation. As such, the fitness function is the key driver of a Genetic Algorithm with
far reaching implications for its speed, efficiency and effectiveness.

There are a number of requirements for a fitness function [2, 5]. It should:

• be fast in terms of processor execution time & optimised for performance.

• ideally be unique, i.e. that two different solutions cannot be assigned the same
fitness value;

• and ideally be on a ratio scale - i.e. an individual with a fitness value of 4000
should be twice as fit as an individual with fitness value of 2000. However, in
reality this is often unachievable but should at least roughly hold true.

The major reason for ensuring the fitness function is fast is that as a genetic algorithm
works with a population of solutions, a slow fitness function will have a cumulative
effect in slowing down the optimisation. For example, if the typical evaluation time of
a fitness function for one solution is 30 seconds, it takes 30,000 seconds or over 8
hours to do 1,000 evaluations. Assuming a population size of 20, this would only be
50 generations worth of evaluations - which is not an unreasonable example. Addi-
tionally, as the fitness function has the greatest influence on the effectiveness of a
Genetic Algorithm (being the key driver of the optimisation by influencing the selec-
tion process) an ineffective fitness function will lead to an ineffective optimisation of
a problem. [3]

In order to optimise structural systems, some measure of the relative performance
of a structure must be obtained. Whilst the aim might be the minimisation of weight,
in order to avoid the optimisation process resulting in the minimum section size for
every member, additional constraints must be implemented. In general, a structural
analysis of the system must be undertaken to allow the fitness of an individual to be
modified based on the performance of the structure - in terms of deflection, stress,
buckling etc. Additional constraints, such as reducing the number of cross-section
types which meet at any one joint for construction purposes, could also be enforced.

For the fitness functions developed in this paper, problem specific finite element sol-
vers using the CALFEM toolbox were developed. As the main aim was to optimise
weight whilst taking into account of the performance of the structure, in this paper an
approach to fitness was adopted where the weight of the structure was modified by
a number of factors. The modifying factors were based on tests made on CALFEM
output, such as checking the displacement of the structure was within acceptable li-
mits, on a sliding scale of 0 to 1 (0 being complete failure of the test, therefore giving
an overall fitness of 0; 1 being a perfect pass of the test).

Whilst the fitness functions and solvers are discussed later in this work, the relevant
source code can be found in Appendix E on page 75

21

4.3 Selection 4 THE GENETIC ALGORITHM

Algorithm 2 Roulette Wheel Selection Pseudo-code

1. Sum fitness of all individuals in the population = S

2. Generate a random number r in the interval 0 to S

3. Repeat the following until termination

(a) Iterate through the population, summing fitnesses in running total s.

(b) If sum s is greater than r, return the individual number.

4.3 Selection

For each generation, the fitness of each member of the population is evaluated using
a fitness function. However, in order to meaningfully use the fitness values to drive
the optimisation, the population for the next generation must be selected from the
current generation. A number of genetic operators for selection have been develo-
ped. In rough terms these fall into two categories: stochastic and deterministic.

Fitness proportional selection is one of the most common selection methods. It
is a stochastic method which ensures that whilst fitter individuals have the greatest
chance to be selected, there is a chance that weaker individuals will also be selec-
ted. The method is more commonly known as Roulette Wheel Selection (RWS) as
this provides a useful analogy for how it functions. In general, the greater the fitness,
the greater the proportion of the wheel (i.e. the roulette wheel pocket size) an indivi-
dual is consequently given a greater chance of being selected. As each selection is
independent of others selecting individuals is consequently analogous to a random
throw on a roulette wheel.

Pseudo-code for Roulette Wheel Selection to select a single individual, from a popu-
lation sorted in descending order of fitness, can be seen in Algorithm 2.

When using the RWS technique it is important to note the fitness values assigned to
chromosomes should be positive numbers, considering the cumulative fitness of the
population is used. A worked example for Roulette Wheel Selection is presented be-
low, using a population of four individuals and their corresponding fitness (calculated
using some fitness function) .

Individual Fitness % of Total
1 8000 40.0
2 6000 30.0
3 4000 20.0
4 2000 10.0

Total 20000 100.0

Summing the individual fitnesses obtains a total of 20,000. The relative percentages
of the total for each individual are also shown above. The corresponding weighted
roulette wheel visualisation is shown in below

22

4.3 Selection 4 THE GENETIC ALGORITHM

Fig. 2: Weighted Roulette Wheel

As individual 1 has a 40% share of the total fitness, with each “spin” of the roulette
wheel it has a 40% chance of being selected. Similarly, although individual 4 only
has a 10% share, it still has a chance of being selected for reproduction. In general,
individuals with higher fitness with be selected to reproduce more often.

To select an individual, a random number between 0 and the total fitness is generated
- in this case between 0 and 20,000. The RWS algorithm then iteratively sums the
fitnesses of the population until the running total is greater than the random number.

Individual Fitness Cumulative Fitness
1 8000 8000
2 6000 14000
3 4000 18000
4 2000 20000

Therefore, if the random number generated was 16,000, the individual selected
would be number 3 (as the running total at this point is 18,000). Similarly if the
random number generated was 5,000, the individual selected would be number 1
(as the running total at this point is 8,000)

Deterministic selection methods, such as selecting a certain percentage of the fit-
test individuals, only allow the fittest members of a population survive and there is no
element of randomness in their selection. Such methods generally cause population
stagnation as weaker individuals will not be selected, causing the population to tend
towards a limited set of genetic features i.e. homogeneity.

Whilst elitism is not strictly a selection method, it can be used to complement other
genetic operators to ensure that the fittest members of a population survive to the
next generation. With crossover and mutation, it is possible that the fittest member
of the population could be lost. The use of elitism has a significant increase on the
performance of a genetic algorithm and thus avoids regression of the population’s
fitness i.e. ensuring that fitness cannot decrease in successive generations.

For the algorithm developed in this paper, RWS was implemented as the selection
method due to its effectiveness and ease of implementation. Elitism is also imple-
mented and investigated in this work. Full MATLAB source code is available for
Elitism and Roulette Wheel Selection in respectively Appendices D.4 on page 73
and D.5 on page 74.

23

4.4 Termination Conditions 4 THE GENETIC ALGORITHM

4.4 Termination Conditions

With any optimisation process, the unknown is the optimum value of the function; it is
not possible to simply terminate once “the optimum” has been found, since this would
require prior knowledge of the optimum value. Therefore, the termination of the
optimisation process must be based on other more subjective factors. The Genetic
Algorithm created for this work implements two termination conditions: convergence
and a generational limit.

• Convergence: If after a set number of generations no improvements are made
to the fitness individual - i.e. the fittest solution does not improve - then the
optimisation is terminated.

– By default, if 20 generations pass without improvement in the fitness, the
optimisation is terminated.

• Generations: After a set number of generations have elapsed, the optimisation
is terminated.

– This is set at 250 generations by default.

Other termination conditions not implemented in this work can also include compu-
tational time limits - most commonly in super-computer environments where access
is charged by time.

4.5 Expanded GA Flowchart

In order to place the concepts of Encoding, Fitness Functions, Selection and Termi-
nation in context, the flowchart below was developed and expanded from Figure 1 on
page 17. A complete flowchart can be found in Appendix A on page 59, annotated
with the major investigative points of this work, as laid out in the Objectives section
on page 15.

For structural optimisation with discrete variables, structural data look-up tables are
required to decode an individual into a design solution, as seen in section 4.1.1 on
page 19. For problems with continuous variables, structural data look-up tables are
replaced by the conversion from a continuous value to a discrete value as detailed in
section 4.1.2 on page 20.

24

4.5 Expanded GA Flowchart 4 THE GENETIC ALGORITHM

Fig. 3: Full Flowchart

25

5 TEN BAR TRUSS

5 Ten Bar Truss

A classic example of a structural optimisation problem with discrete variables is a
truss system. Steel truss structures predominantly consist of sections bought from
steel producers - for example Corus Group in the UK - and as such only standard
sections are available to buy off-the-shelf. Accordingly if the aim is to optimise the
weight of a truss, we must work with discrete design variables as defined by the steel
sections available on the market.

Goldberg and Samtani - a postgraduate student of Goldberg - applied a genetic
algorithm to the structural optimisation of a ten element plane truss. This particular
example has been used as a benchmark in a number of research papers into structu-
ral optimisation using Genetic Algorithms and consequently is used as a benchmark
problem for the Genetic Algorithm in this paper. The ten bar truss is presented below
in Figure 4. However it has been adapted from the original Imperial units of 720 x
360 inches and point loads of 100kips into SI units of 18 x 9m and 450kN [10, 6, 11].

The objective of the Ten Bar Truss problem is to minimise the weight of the structure
whilst subject to certain structural constraints on each member and on the perfor-
mance of the structure as a whole. The main structural considerations applicable
to a truss system are: buckling, yielding, and deflection. Therefore these three
constraints are applied in the problem specific fitness function.

In Goldberg’s original paper the areas of each of the ten elements could vary linearly
between 0.1in2 and 10in2 (i.e. using continuous variables) . However, for the pur-
poses of this paper the truss problem is approached using discrete variables. Each
of the ten elements may be one of four distinct circular sections with associated sec-
tional properties. Four circular hollow sections (CHS) were selected to approximately
represent an even spread of sections available from the Corus group and in regular
production (i.e. not rolled to order or special production). The sections were selected
by the author from the Corus Celsius® 355 range, which are structural hollow sec-
tions (SHS) hot finished to EN10210: 2006. They have a minimum yield strength of
355MPa, a Young’s Modulus of 210GPa and a density of 7850 kg/m3.

The sectional properties of the chosen sections are presented below and this forms
the basis of the structural look-up table used by the fitness function & solver for this
problem.

Fig. 4: Ten Bar Truss diagram

26

5.1 Fitness Function 5 TEN BAR TRUSS

Cross
Section
Number

Outside
Diameter

D (mm)

Thickness

T (mm)

Area

A (cm2)

Second
moment
of area
I (cm4)

Radius of
gyration

r (cm)
1 406.4 8.0 100 19874 14.1
2 355.6 8.0 87.4 13201 12.3
3 219.1 6.3 42.1 2386 7.53
4 114.3 3.2 11.2 172 3.93

Tab. 1: Ten Bar Truss Section Properties

To satisfy the encodability requirement, the binary bit-string method was chosen
to encode the problem.. There are 10 elements in the structure and each element
can be one of 4 sections. Therefore it follows that the bit-string length required to
represent all possible combinations is 20 bits. The reasoning for length is presented
below.

10 design variables (d.v.). Each design variable can be 1 of 4 values.
⇒Need to represent 4 choices in binary
⇒2 bits per d.v i.e. binary 00 to 11 = decimal 0 to 3, giving 4 distinct values
⇒10 d.v. x 2 bits = 20 bits.

To get cross section number for a particular element from the bit-string, select the
appropriate pair of bits, convert from binary to decimal and add 1.

Example:
Chromosome A: 00000000000000000000
⇒decodes to represent all 10 sections with Cross Section 1 i.e. the 406.4 x 8.0 CHS

Chromosome B: 10101010101010101010
⇒decodes to represent all 10 sections with Cross Section 3 i.e. the 219.1 x 6.3 CHS

With an encoded bit-string length of 20 bits, the Genetic Algorithm will have to search
among 1,048,576 (220) possible solutions, also known as the search space. The ge-
netically encoded search space should match the number of possible solutions of
the problem itself and with 4 possible values for 10 elements the number of combi-
nations is 1,048,576 (410). Therefore, as expected, the binary encoding of the search
space matches the number of combinations of the actual problem and this satisfies
the encodability requirement.

5.1 Fitness Function

In order to produce practical and useful solutions to the problem, the fitness function
for the Ten Bar Truss needs to penalise heavier structures & conversely reward ligh-
ter structures. However this must be done whilst imposing certain constraints from
consideration of the buckling, yielding, and deflection of the structure. Accordingly
the following scheme was devised:

Fitness = Weight fitness×Displacement fitness×Y ielding fitness×Buckling fitness

27

5.1 Fitness Function 5 TEN BAR TRUSS

The displacement, yielding and buckling fitness values are factors on a range of 0 to 1
which modify the overall fitness of the structure depending on constraint violation (i.e.
0 for critical failure of a test and 1 for a pass within acceptable limits). Consequently
if a single modifying factor is evaluated to be 0, the overall fitness of the structure
will be found to be 0 and this implies a fatal flaw with a particular solution rendering
it entirely unusable. The basis upon which the weight fitness and modifying factors
were derived is presented below.

The MATLAB source code for the Ten Bar Truss fitness function is available in Ap-
pendix E.1.1 on page 76.

5.1.1 Weight Fitness

As stated, the objective of this problem is to minimise the weight of the truss sys-
tem. However, a minor problem arises when trying to find a minimum with a Genetic
Algorithm, in that they seek to maximise the fitness value. The solution adopted for
the weight portion of the Ten Bar Truss fitness function was to create the weight fit-
ness equation in the form of: Weight F itness = Constant −Weight. The constant
was determined by calculating the maximum weight of the structure (i.e. all elements
using the heaviest section) and rounding the value upwards. With a maximum weight
of the constant was found to be 9000. (Calculation details are given in Appendix B
on page 60)

Consequently the weight fitness component was defined as:

Weight fitness = 9000−
∑

(Elementweights in kg)

5.1.2 Displacement Fitness

To objectively evaluate the displacement fitness of the truss a scheme based upon
imposing serviceable and ultimate displacement limits was created. As established
above, the modifying factors are defined as a linear sliding scale from 0 to 1. Hence
the following scheme was devised, on the assumption that if the overall displacement
of the structure is less than the serviceable limit, that this in fitness terms is equal
to a solution displacing exactly to the serviceable limit (and similarly with solutions
exceeding the ultimate limit). The algorithm with which the displacement fitness is
determined is shown below in Algorithm 3.

Algorithm 3 Displacement Fitness
if maxDisplacement 6 slsLimit

⇒ displacementF itness = 1.0
else if (ulsLimit < maxDisplacement > slsLimit)
⇒ displacementF itness = (ulsLimit−maxDisplacement)

slsLimit
else

⇒ displacementF itness = 0
end-if

28

5.1 Fitness Function 5 TEN BAR TRUSS

5.1.3 Stress Fitness

Whilst designing structural systems it is essential to ensure that under the expec-
ted loading there is an adequate factor of safety against failure of the structure.
The stresses induced under the action of the loads to the structure must always
be less than the strength of the material. However, it is also highly desirable to en-
sure that the structure does not permanently deform under the action of loading.
Consequently, this means ensuring that the stresses acting within members must
be less than the yield strength of the material. The yield stress is defined as the
transition point between elastic & plastic behaviour. Before this point, the material
is deforming elastically (i.e. will return to natural shape when loading is removed)
and after it will begin to deform plastically (i.e. permanent changes of shape which
remain after loading is removed).

In order to define a fitness scheme for yielding, the objective of the fitness function
must be considered. Whilst it would be possible to penalise any solution which was
found to have a number of elements yielding by assigning a fitness value of 0, this
would be detrimental to the optimisation. This is because for a Genetic Algorithm
effective at solving a problem there, in general, be a “hill to climb” i.e. there must be
a way to converge to the solution - a simple right/wrong fitness measure does not
allow for this. The corollary to this statement is that in the case of a severely flawed
solution to a problem (as defined by constraint tests) it is appropriate to assign a
fitness value of 0, as this will ensure the solution is not used in the formation of the
next generation. [3]

Therefore, it would be preferable to penalise solutions on a sliding scale on the two
main measures of yielding: number of elements yielded and ratio of stress to yield
stress for each element i.e. the proximity to yielding of each element. It follows that a
solution with a majority of elements yielded or close to yielding should be assigned a
low fitness, whereas a solution with no elements yielding should be assigned a high
fitness. However, even if a solution has no elements yielding, consideration must be
made of how close to yielding the elements. This is to ensure that a solution where
the stress in all the elements is at 99% of the yield stress is not assigned a high
fitness. The resulting yielding fitness will always range between 0 and 1, however it
will only reach 1 where no loading is applied to the structure and consequently when
no element stresses are induced.

The algorithm used for Yielding Fitness can be seen below.

Algorithm 4 Ten Bar Truss Yielding Fitness

numElementsY ieldedPenalty =
(
1− numElementsY ielded

10

)2
for each element (i = 1→ 10)

elementY ieldingRatio = elementStress(i)
yieldStress

if(elementY ieldingRatio > 1)
⇒ elementY ieldingRatio = 1

end-if
elementF itness(i) =(1− elementY ieldingRatio)2

loop

yieldingF itness =
√∑

(elementF itness) /10× numElementsY ieldedPenalty

29

5.2 CALFEM Solver 5 TEN BAR TRUSS

5.1.4 Element Force Fitness

As with yielding, when designing structural systems it is required to ensure that struc-
tural members do not fail under load. A structural member subjected to compressive
stresses is at risk of buckling if compressive stresses exceed the ultimate compres-
sive stress of the material.

A common buckling test is the Euler Buckling load, which calculates the maximum
axial force a member can withstand without failing. It relates the modulus of elasticity
E, the second moment of area I, the length of the column L and the effective length
factor K. The effective length factor is based upon the end conditions of the element
in question. However, as trusses are assumed to be pin jointed, both ends are pinned
so K = 1.0.

FEuler =
π2EI

(KL)2

The algorithm used for Buckling is similar to that of Yielding. However, instead of
testing stresses against the yield stress, compressive element forces are compared
to the Euler buckling load and penalised accordingly with the overall Buckling Fitness
similarly ranging from 0 to 1.

5.2 CALFEM Solver

In order to provide the fitness function with the necessary structural analysis of a
solution, a structural solver which wraps around & utilises CALFEM functions was
developed.

The solver used for the Ten Bar Truss was extensively modified from an basic example
(exs4) provided with the CALFEM toolbox. However, the solver was fully rewritten
and significant alterations were made to improve performance, efficiency and func-
tionality.

The main input to the solver is the 10 × 1 array of element cross-sectional areas
A. This is then combined with the Young’s Modulus of Steel to create the element
properties matrix ep

i = [E Ai] (Note: E is naturally constant for all elements).

The solver returns:

• a global displacement vector a (m)

• a reaction vector Q (kN)

• an element element force matrix N (kN)

• an element stress matrix O (kN/m2)

• a weight scalar W (kg)

The returned variables are consequently used in the fitness function described in the
previous section.

The pseudo-code for the Ten Bar Truss solver is presented in Algorithm 5. (Note: the
naming convention of variables follows that of the CALFEM toolbox.)

The full MATLAB source code for the Ten Bar Truss solver is available in Appen-
dix E.1.2 on page 78.

30

6 REINFORCED CONCRETE BEAM

Algorithm 5 Ten Bar Truss solver pseudo-code

1. Set finite element geometry of structure (topology matrix - mapping of elements
to degrees of freedom - Edof and nodal coordinates Ex, Ey).

2. Assemble load vector f .

3. Assemble element stiffness matrices Ke
i (where i = 1 → 10) into global stiff-

ness matrix K.

4. Set the boundary conditions and solve the system of equations for global dis-
placement vector a & reaction vector Q.

5. Extract element displacement vector ed from the global displacement vector
according to the global topology matrix Edof .

6. Compute element element forces matrix N , by relating Ex, Ey, the element
properties ep

i (where i = 1→ 10) and the element displacement vector ed.

7. Calculate element stresses σ = N
A , using element-by-element matrix algebra

as both N and A are 10× 1 matrices.

8. Calculate the weight of the structure W .

6 Reinforced Concrete Beam

The optimisation of a reinforced concrete simply supported beam was chosen by
the author as a second problem to show the adaptability of Genetic Algorithms to
different problems.

With a problem specific fitness function and finite element solver, the same generic
Genetic Algorithm - as implemented by the author - was applied to the optimisation
of this problem. No modifications were required to be made to the overall Genetic
Algorithm to allow the beam problem to be optimised.

In common with the Ten Bar Truss problem, the objective is to find the minimum
weight (i.e. the minimum beam cross-section required) subject to a number of constraints.
The main considerations identified for an RC beam were deflection, reinforcement &
moment capacity; these constraints are set out in the Fitness Function section.

Whilst Genetic Algorithms are ideally suited to solving problems with discrete va-
riables (such as distinct steel cross-sections and their discontinuous cross-sectional
properties), this does not exclude GAs from also solving problems with continuous
variables (such as optimising dimensions). A dimension, such as a width or depth,
can vary continuously between 0 and infinity. However, as discussed in the Conti-
nuous Variables section (4.1.2 on page 20), to encode such a variable requires
consideration of discretisation & practical limits.

The initial problem was defined as a 9m simply supported RC beam, with loads of
1000kN at 3 & 6m and a cross-section varying between 0 to 1.5m by 0 to 1.5m.
However, consideration was also given to flexibility of input i.e. allowing the user to
specify a span, cross-section limits and a set of arbitrary loads. This will be covered
later in section 7.1 on page 36.

31

6.1 Fitness Function 6 REINFORCED CONCRETE BEAM

As with the Ten Bar Truss, to satisfy the encodability requirement, the binary bit-
string method was again chosen by the author. To encode a cross-sectional area
uniquely, the height & width must be represented. If, say, the dimensions of the
section are to be specified to 10mm accuracy, then a minimum of 150 possibilities
are required. Therefore, for each dimension, requires 8 binary bits, (i.e. 27 = 128
& 28 = 256 =⇒8 bits to represent 150 values.) Consequently the bit-string length
required is 16 bits. With a bit-string length of 16 bits, the search space is 65,536
(216) possible solutions.

However, as 8 binary bits provides 256 values, one option is to discount any values
above 150. This would essentially cause approximately 40% of the search space to
be negated and be specific to the problem at hand. Another option is to increase the
resolution to that provided by 8 bits (i.e. 1500mm/256 ≈ 5.8mm) and subsequently
round to the nearest 10mm.

The second option was selected as it is a more flexible method, given that if allowable
cross-section size increases - e.g. a user inputs different cross-section size limits -
the resolution scales proportionally.

A worked example - assuming limits of 0 to 1.5 by 0 to 1.5m - is provided below.

Example:
Each binary value represents 1500mm/256 = 5.859... = 5.86mm
Chromosome A: 1111111100111110
⇒Breadth = 11111111, Height = 00111110
⇒Breadth = 256th value, Height = 63rd value
⇒Breadth = 256 ∗ 5.86 = 1500mm, Height = 63 ∗ 5.86 = 370mm rounded to the
nearest10mm

Chromosome B: 1100011001101110
⇒Breadth = 11000110, Height = 01101110
⇒Breadth = 199th value, Height = 111th value
⇒Breadth = 199 ∗ 5.86 = 1170mm, Height = 111 ∗ 5.86 = 650mm rounded to the
nearest10mm

6.1 Fitness Function

The fitness function used for the Simply Supported Beam problem is similar to that
applied in the Ten Bar Truss. The weight fitness is the primary component and is mo-
dified by a number of other factors on a range from 0 to 1. Note: the word “fitness” in
the formula presented below has been shortened to “fit.”, for typographical reasons.

Fitness = Weight fit.×Displacement fit.×PlasticMoment fit.×MomentCapacity fit.×Rebar fit.

The weight fitness is obtained in a similar manner to that of the Ten Bar Truss. Ho-
wever it is based upon weight per unit length rather than total weight, as only one
cross-section is used for the structure. The constant was again calculated from the
maximum weight of the structure.

32

6.1 Fitness Function 6 REINFORCED CONCRETE BEAM

The displacement, moment capacity and plastic moment tests were applied in a
similar style to the modifying factors in the Ten Bar Truss problem. The displacement
fitness test is identical to that in the truss problem, although the limits applied are
from BS8110, limiting deflection to span/250 and span/500 (Cl 3.4.6.3) [12]. The moment
capacity fitness compares the maximum moment capacity of the reinforcement to
the moment applied; it assigns a linear fitness value between 0 if the full capacity
is used & 1 if no capacity is used. The plastic moment fitness assigns a value
between 0 & 1 based on the moment applied to the section and the plastic moment
Mp = (b∗h2)÷4×yieldStress. In the interest of brevity, further details of the modifying
factors have been omitted due to the similarity in implementation to those used in the
Ten Bar Truss. However, full MATLAB code listings for the Simply Supported Beam
fitness function are available in Appendix E.2.1 on page 83.

The major difference between the two problems presented in this paper - in terms of
the fitness functions - is the requirement to provide reinforcement within the concrete
beam section. The procedure used to design the reinforcement, for bending in the
beam at the ultimate limit state, is taken from BS8110-1:1997 - specifically Cl 3.4.4.4:
Design formulae for rectangular beams [12]. The procedure can be found in Algo-
rithm 6.

The area of steel required, calculated using the Design formulae, is then used to
select a reinforcement solution. The selection process roughly models that of the
manual process.

The procedure is designed to find a solution which satisfies the area of re-bar re-
quired and the section width. It should be noted that the re-bar selection method
will tend towards a solution with the smallest possible diameter bars. In real-world
design, assuming adequate section width, engineering judgement would be called
upon to decide between supplying 9T16, 6T20 or 4T25 bars (all of which provide
approximately similar total areas of re-bar). However, automating such judgement
is outwith the scope of this work and the method used provides an adequate, if not
always entirely realistic re-bar selection. The pseudo-code for re-bar selection can
be seen in Algorithm 7.

In order for the reinforcement selection process to influence the Genetic Algorithm,
it is necessary to assign a fitness value based upon its results. However, it is overly
problematic to design a meaningful scheme to evaluate the fitness of a re-bar selec-
tion, given that there could be many equally valid solutions. Additionally, as mentio-
ned previously, a right/wrong fitness measure does not allow a genetic algorithm to
converge effectively to a solution. Therefore, the reinforcement fitness is a qualitative
measure of the reinforcement solution. It is assigned on an indirect “reward” basis
rather than any direct calculation.

Initially the fitness is assumed to be 0 and as a number of checks are met, the value
is incremented up to a maximum value of 1.0. The checks are:

• whether the reinforcement fits into the section with the minimum allowable
centre to centre spacing;

• whether the design satisfies cover to reinforcement requirements;

• and whether a solution, which fits into the section, was found using the bar
diameters available to the selection process.

Complete MATLAB source code for the beam reinforcement design process is avai-
lable in Appendix E.2.4 on page 88.

33

6.1 Fitness Function 6 REINFORCED CONCRETE BEAM

Algorithm 6 Beam Reinforcement calculations pseudo-code

1. Calculate the maximum moment capacity of the section (corresponding to a
neutral axis depth at ductile failure of 0.5d and only tensile reinforcement)

Mr = 0.156× bd2 × fcu

2. Obtain coefficient K, which should not exceed 0.156.

K =
Ma

bd2fcu

3. Obtain lever arm z & neutral axis depth x and check they are within acceptable
limits.

z = (0.5 +

√
0.25−

(
K

0.9

)
d x =

(d− z)
0.45

4. Calculate required area of steel for the applied moment, enforcing a minimum
area of steel required.

As =
Ma

0.95× fy × z
Amin =

0.13
bh

Algorithm 7 Re-bar Selection pseudo-code

1. Select minimum bar diameter available from range supplied (say 16, 20, 25,
32, 40 diameter bars)

2. Repeat the following re-bar selection algorithm until termination

(a) Calculate number of bars, using currently selected diameter, required to
provide required area of steel.

(b) Required width is the total width of bars, shear links and minimum bar
spacings.

(c) if Required width ≤ Section width
Solution found, terminate.

else
Select next bar diameter up
(or terminate if at maximum bar diameter allowable)

end-if

34

6.2 CALFEM Solver 7 GRAPHICAL USER INTERFACE

6.2 CALFEM Solver

The CALFEM solver used to provide the fitness function with a finite element analysis
of a solution was adapted from a basic example in the CALFEM toolbox (example
exs3). As with the Ten Bar Truss solver, a number of extensive changes were made
to the original example.

The two main inputs to the solver are the breadth b and height h.

The solver returns:

• a global displacement vector a (m)

• a reaction vector Q (kN)

• a section forces array es consisting of the element force N , shear force V and
moment M for each finite element

• a weight per unit length scalar W (kg/m)

The major improvements made by the author to the solver, over the CALFEM example,
is to allow Flexibility of Input. Loads can be specified at arbitrary points on the beam
(i.e. not necessarily on finite element nodal points) and an arbitrary span can be
specified . Flexibility of Input is discussed in section 7.1 on the next page.

The full MATLAB source code for the Simply Supported Beam solver is available in
Appendix E.2.2 on page 85.

7 Graphical User Interface

Whilst the Genetic Algorithm developed in this work is fully functional from the MAT-
LAB command line, a graphical user interface has also been developed as a user-
friendly front-end. The GUI was built using M-code and the MATLAB Graphical User
Interface Development Environment (GUIDE).

The primary reason for developing a GUI was to allow a user unfamiliar with the topic
to experiment with genetic algorithms and their parameters, such as population size
& mutation. A screen-shot of the GUI can be found in Figure 5.

35

7.1 Flexibility of Input 7 GRAPHICAL USER INTERFACE

Fig. 5: Genetic Algorithm GUI

An additional advantage to providing a GUI is that the optimisation process can be
exposed to the user, through visualisations rather than simply text based output.

For each optimisation run, the user is provided with three windows detailing the ope-
ration of the optimisation process:

1. a finite element model of the problem, showing the fittest solution and its de-
flected shape, updated each generation;

2. a fitness graph showing the fitness of the best individual, as well as the average
fitness of the population, across generations;

3. and finally a visualisation of the best solution to the problem found in the opti-
misation run (i.e. showing section sizes and other details).

See appendix C on page 61 for examples of typical visualisations.

7.1 Flexibility of Input

To allow user interaction with the Ten Bar Truss and Simply Supported Beam pro-
blems, the ability to configure the parameters of the problem (within limits) was pro-
vided. This was developed as a proof-of-concept, to demonstrate the ability of Ge-
netic Algorithms to adapt to different problem scenarios other than the default values
provided within this work.

With the truss problem, the two point loads can be altered in magnitude and the
different results observed. The truss problem options window can be found in Figure
6. By way of example, the results of two optimisation runs with pairs of 1000kN and
100kN loads are presented below in Figures 7 and 8 respectively.

A graphical user interface was also developed for the Simply Supported Beam pro-
blem. Almost all parameters of the problem are configurable, from the length of span
to arbitrarily placed loads and the limits placed upon section size. A screen-shot of
the beam problem options interface can be seen in Figure 9.

36

7.1 Flexibility of Input 7 GRAPHICAL USER INTERFACE

Fig. 6: Truss Parameter GUI

Fig. 7: Truss with loads of 1000kN, 1000kN

Fig. 8: Truss with loads of 100kN, 100kN

37

7.1 Flexibility of Input 7 GRAPHICAL USER INTERFACE

Fig. 9: Beam Parameter GUI

38

8 EFFECT OF GENETIC ALGORITHM PARAMETERS

Part III. Results

8 Effect of Genetic Algorithm Parameters

With any computer program, whether in Engineering or not, care must be taken
with its use. The adage of “Garbage in, Garbage out” always applies, whether with
the use of spreadsheets or Finite Element Modelling. Similar to FEM, if a Genetic
Algorithm is used without some understanding of its workings or the significance &
effect of its parameters, then its output cannot be relied upon.

With this in mind, an investigation was undertaken by the author into the effect of
the various Genetic Algorithm parameters on the optimisation of the Ten Bar Truss
problem. Testing was undertaken by establishing baseline values for the four para-
meters: population size, mutation %, elitism % and whether elites should be mutated.

The baseline values were decided upon by the author based on his experience in
developing the algorithm, as well as a brief re-cap on these parameters is presented
below:

• Population size of 20 (controls the number of individuals with which the GA has
to work with);

• Mutation of 0.5% (controls the probability that any one particular bit may be
inverted);

• Elitism of 10% (controls the percentage of the fittest members of the current
population which are preserved to the next generation without crossover/repro-
duction);

• Mutate elites disabled (controls whether members of the population selected
as elites can be mutated or not).

For each permutation of an individual variable, the Genetic Algorithm was run 20
times and the results noted. It should be noted that as Genetic Algorithms are a
stochastic process, using probabilistic methods to converge to a solution, any two
result sets can differ. Consequently, there is an element of uncertainty in the results.

Nevertheless, rough trends should hold true, giving approximately similar results if an
identical test was performed. For example, if the GA is run 20 times with a particular
set of parameters, if the optimum solution is reached 5 times, it is reasonable to
expect that if the GA with was run a further 20 times, that the optimum solution
would be reached an approximately similar number of times.

Termination conditions chosen by the author were:

• terminate if 20 generations have passed since the last improvement in maxi-
mum fitness value

• terminate if 250 generations have passed

In all cases, the first set of results were taken. As Genetic Algorithms are a sto-
chastic process, subsequent result sets could present an entirely different narrative.
However, on average, result trends should hold roughly true.

39

8.1 Population Size 8 EFFECT OF GENETIC ALGORITHM PARAMETERS

Population
size

Num. times
optimum
solution
reached

(of 20 runs)

Average number of
generations to

reach maximum
fitness found

Average
optimisation

time
(s)

10 1 33.00 3.87
20 6 29.25 4.63
50 13 22.40 6.86

100 19 17.85 10.73

Tab. 2: Effect of Population Size

8.1 Population Size

The theory of Genetic Algorithms suggests that the majority of their power is derived
from the ability for crossover & selection. Crossover & selection effectively work
in tandem to develop highly fit individuals, by innovating new individuals through
combination of genetic material from across the population. As GAs are implicitly
parallel - i.e. working from a large number of points simultaneously - if the population
size is increased then it should follow that the efficacy of the optimisation increases
[5].

By only modifying the population size and keeping other parameters constant at the
chosen baseline values, the effect of population size on optimisation using Genetic
Algorithms is readily apparent. In Table 2 below, the salient results are presented.
Note: The average number of generations to reach maximum fitness refers to the
fittest individual found in that run, rather than the optimum solution.

Whilst a low population size reduces the optimisation time, with less genetic material
to work with, the algorithm finds the optimum solution rarely. A false optimum was
found 19 times out of 20, with a population size of 10 individuals.

Increasing the population size, increases the average optimisation time. This is sim-
ply due to the additional computation required in processing larger population sizes.
Some of the increase in optimisation time can be attributed to the need to perform
genetic operations, such as crossover, on a larger population, which will necessarily
take longer. However, the main factor in this increase will be the fitness function.
For each generation, the fitness of each member of the population is evaluated by
the fitness function. Therefore, if the number of individuals is increased, the fitness
function is evaluated a proportionally larger number of times per generation.

Although the optimisation will take longer with a larger population size, running the
GA with a population size of 100 resulted in the optimum solution 19 times out of 20.
As mentioned previously, it is perfectly possible that a subsequent set of runs for a
population of 100 could result in the optimum solution in all runs.

8.2 Mutation

As stated in the introduction to Genetic Algorithms, mutation plays a secondary but
vital role. It serves to maintain diversity, by potentially creating new novel genetic
features. Likewise, mutation can prevent the lost of potentially useful features during
the normal process of crossover and selection [5].

40

8.3 Elitism 8 EFFECT OF GENETIC ALGORITHM PARAMETERS

Mutation
(%)

Num. bits
mutated per
generation
(out of 400)

Num. times
optimum
solution
reached

(of 20 runs)

Average number of
generations to

reach maximum
fitness found

Average
optimisation

time
(s)

0 0 1 11.30 3.01
0.5 2 4 27.00 4.47
2 8 10 34.40 5.14
5 20 12 38.40 5.56
10 40 7 33.45 5.10
20 80 0 30.20 4.75

Tab. 3: Effect of Mutation

With a population size of 20, a number of different rates of mutation were used. The
pertinent results are shown in Table 5. Note: As the Ten Bar Truss problem has a
bit-string length of 20, the total number of bits per generation of 20× 20 = 400.

From the results it can be seen that without mutation, the optimisation performs
poorly, only reaching the optimum result once.

The 0.5% mutation rate results in the optimum solution being reached 4 times and
this roughly compares to a set of runs with identical settings in the population size
results (With population size 20, and also mutation of 0.5%, the optimum was obtai-
ned 6 times). This shows that two sets of 20 optimisation runs with identical settings
will result in similar but not exactly the same result.

As the mutation rates are increased, the number of times the optimum solution is
reached increases. At a rate of 5%, mutation causes the optimum to be found 12 out
of 20 times. However, increasing mutation rates further has a detrimental effect on
the optimisation.

Therefore it can be inferred that minimal rates of mutation are beneficial to the op-
timisation process. Excessive rates cause overzealous mutation and the optimum
solution is not found as often, due the loss of potentially useful genetic material.

As the mutation rates are increased, the average number of generations & length of
optimisation follows a similar pattern to the number of times the optimum solution is
reached. This correlation should be circumstantial and an indirect result of a optimi-
sation process terminating early due to the lack of improvement made over a (false)
optimum found early in the optimisation process.

8.3 Elitism

In the normal course of crossover, it is entirely possible that the fittest members of the
population could be lost. For example, if by chance the fittest individual is crossed
over with the least fit individual, the optimisation is setback. Consequently, there is
no guarantee that the optimum - or any other highly fit individual - will survive in the
population.

Elitism is used to complement the other genetic operations by ensuring that the opti-
misation is not setback by any loss of the fittest members of the population. In theory,
it should improve the performance of the optimisation significantly.

41

8.3 Elitism 8 EFFECT OF GENETIC ALGORITHM PARAMETERS

Elitism
(%)

Num. of
Elites (in a
population

of 20)

Num. times
optimum solution

reached
(of 20 runs)

Average number of
generations to

reach maximum
fitness found

Average
optimisation

time
(s)

0 0 0 193.55 18.77
10 2 7 35.00 5.16
20 4 2 23.00 4.04
40 8 3 28.25 4..45

Tab. 4: Effect of Elitism

Fig. 10: Fitness graph over iterations (without Elitism)

Fig. 11: Fitness graph over iterations (with Elitism)

42

8.3 Elitism 8 EFFECT OF GENETIC ALGORITHM PARAMETERS

As can be seen in the results in Table 4, using no elitism has a severely detrimen-
tal effect on the optimisation. In many cases the optimisation was terminated after
reaching the maximum number of generations (250) and in no run was the optimum
solution obtained. From Figure 11 it can be seen that the fittest individuals found in
this run are lost numerous times, causing the graph to trend downwards. The ave-
rage fitness of the population is erratic at best and no overall improvement is made.

Using elitism has a significant increase on the performance of a genetic algorithm,
by avoiding regression of the population’s fitness i.e. ensuring that fitness cannot
decrease in successive generations. In Figure 11, elitism of 10% was used i.e. the
fittest two individuals from each generation are preserved unaltered to the next ge-
neration.

8.3.1 Mutation of Elites

In the author’s implementation of a Genetic Algorithm, mutation may be applied to
all members of the population or to all but the fittest i.e. not those selected as elites.
Theoretically by not allowing mutation of elites, which is the default behaviour of the
GA, the fittest individuals are preserved entirely unchanged from one generation to
the next. This can have two consequences:

• the fittest solution is preserved from detrimental mutation, ensuring no loss of
fitness, ensuring a smooth optimisation process;

• or the fittest members may be denied beneficial mutation, which could poten-
tially result in a fitter - or even the optimum - solution.

In Table 5 it can be seen that the two result sets are approximately similar. Whilst
not mutating elites may occasionally prevent loss of fitness, it may also occasionally
impede improvement. Given the stochastic nature of GAs, the author finds it difficult
to comment on the relative effects of elite mutation, as in any particular optimisation
run mutation of elites may have a positive, negative or no effect at all.

However, with a sufficient population size, from observation there is likely to be many
copies of the fitter individuals, so not mutating elites may have little, if any, effect.
Nevertheless, if a low population was used - for if example the fitness function was
computationally expensive - not mutating elites may protect the fittest members of
the population for potentially detrimental mutation.

Mutate
Elites?

Num. times
optimum solution

reached
(of 20 runs)

Average number of
generations to

reach maximum
fitness found

Average
optimisation

time
(s)

True 4 30.40 4.68
False 5 28.00 4.49

Tab. 5: Effect of Mutation of Elites

43

9 TEN BAR TRUSS RESULTS

9 Ten Bar Truss Results

9.1 Fitness Function Testing

To demonstrate and test the Ten Bar Truss fitness function, the problem was opti-
mised both with and without constraints in the following manner: optimising weight
only; optimising for weight and one constraint; and finally optimising for weight and
all constraints.

Based on the experience of the studies in the previous section, a standard set of ge-
netic algorithm parameters was used in all cases: a population of 100, mutation rate
of 0.5%, elitism of 5% and no mutation of elites. The loading applied was two 450kN
point loads, as seen in Figure 4 on page 26. As with the genetic algorithm parameter
testing, the optimisation process was run 20 times in order to clearly establish the
optimum solution for the given constraints.

Optimising for weight only: The unconstrained optimisation of the truss - i.e. the
minimisation of weight with no regard for structural requirements - consistently re-
sulted in a design where the minimum cross-section - the 114.3 × 3.2 CHS - was
used for all elements. The optimum solution was found in 20 optimisation runs out
of 20. The maximum vertical deflection was found to be 41mm and the weight of the
structure was found to be 912kg. The solution can be found in Figure 12.

Optimising for weight with displacement constraint: Optimising for the minimum
weight whilst constraining the displacement resulted in the optimum solution in 16
runs out of 20. The maximum vertical deflection of the structure was found to be 5mm
and the weight was 4138kg. The design chosen by the GA provides larger members
along expected load paths and also bracing to limit deflection. The resulting structure
can be seen in Figure 13.

Optimising for weight with stress constraint: The two point loads of 450kN do
not produce sufficient stresses to cause any member of the structure to approach
yielding. Therefore, optimising for weight with a constraint on stresses produces a
similar solution to optimising for weight only.

Optimising for weight with element force constraint: The optimum solution for
weight with the element force constraint was found to have a total weight of 5465kg
and the maximum deflection was found to be 6mm. The design provides a fully
braced base using 355.6× 8.0CHS sections near the supports with lighter non-load-
carrying members as well as a 355.6 × 8.0 CHS section on the expected load path
from the lower right hand node. The resulting design can be found in Figure 14.

Optimising for weight and all constraints: The optimum design - for the default
load case - was found to the same as that found by optimising for weight with the
element force constraint. With two 450kN point loads, the buckling fitness - the ratio
of the each elements axial force to its Euler buckling load - is the primary influence
on the optimum solution. The optimum solution was found - on average - in 10.8s.

Notably, the second-most optimum solution, was found to have as weight of 5785kg
and a maximum deflection of 5mm. The additional 355.6× 8.0CHS in this solution -
which adds 320kg to the structure - brings relatively little benefit to the structure as it
is unlikely to be carrying significant load and will only stiffen the structure marginally.
Although this design results in marginally a lower deflection, the added weight causes
this solution to be judged less fit than the optimum solution. The design can be seen
in Figure 15.

44

9.1 Fitness Function Testing 9 TEN BAR TRUSS RESULTS

Fig. 12: Optimum truss design for weight only

Fig. 13: Optimum truss design for weight & displacement

45

9.1 Fitness Function Testing 9 TEN BAR TRUSS RESULTS

Fig. 14: Optimum truss design for weight & buckling

Fig. 15: Second-most optimum truss design for complete fitness function

46

9.2 Search Space 9 TEN BAR TRUSS RESULTS

9.2 Search Space

As has been seen, the Genetic Algorithm is able to converge to the optimum solu-
tion - for a majority of runs - in approximately 10 seconds (with a large population,
using elitism and applying mutation sparingly). However the efficiency of a Genetic
Algorithm in traversing the search space has not - so far - been demonstrated.

A worked calculation has been provided below, using results obtained during Popu-
lation Size testing (section 8.1 on page 40:

For a population of 100 individuals, the optimum result was returned for 95% of
optimisation runs (19 out of 20 times).
An average of 17.85 generations was required to reach convergence, with a minimum
of 10 and maximum of 30 generations required. The fitness function was therefore
evaluated on average 100 × 17.85 = 1785 times, (consequently a minimum of 1000
and maximum 3000 fitness evaluations).
The size of the search space is 220 + 1 = 1048576 + 1 = 1048577 possible solutions.
Therefore, the GA can be said conservatively to have evaluated on average only
1785 ÷ 1048577 = 0.17% of the possible solutions (with minimum of 0.095% and
maximum of 0.29%).

The calculation above is however based upon the assumption that each evaluation
is of a unique individual. It is exceptionally unlikely that the same individual has not
been evaluated more than once - particularly the higher fitness individuals. Conse-
quently, the GA has evaluated on average less than 0.17% of the search space, whilst
locating the optimum solution (and in all likelihood, significantly less than that figure).

The majority of the computational demand from any GA, is its fitness function. The
more times the fitness function is evaluated, the longer the optimisation process.
To illustrate the efficiency of genetic algorithms in traversing the search space, in
terms of computational time, the fitness function was evaluated for every possible
solution. The brute-force method evaluated all 1,048,577 solutions in 4094 seconds,
approximately 68 minutes. This compares to a typical optimisation run using the
Genetic Algorithm, of between 10 and 20 seconds with a large population.

The results of the brute-force method are displayed below as a fitness landscape
(or search space) plot with fitness value on the y-axis and individual number on the
x-axis.

Note: due to scaling issues with displaying 220 data-points and plotted lines, the
graph is misleading in that many more invalid or 0 solutions exist than can be seen
below.

The fitness landscape is exceptionally multi-modal, with many local optima. This
demonstrates the optimisation challenge the Genetic Algorithm must overcome to
locate the optimum solution. If Figure 16 is re-ordered in ascending order by fit-
ness value, a more coherent shape appears. Note: the x-axis in figure 17 below is
meaningless, given that the data-points have been re-ordered.

From the Figures 16 and 17, the task of locating the optimum solution for the Ten Bar
Truss with a search space of 1,048,577 possible solutions - and the efficiency of a
Genetic Algorithm in achieving this - becomes apparent.

47

9.2 Search Space 9 TEN BAR TRUSS RESULTS

Fig. 16: Truss search space map (sorted by individual number)

Fig. 17: Truss search space map (sorted by fitness value)

48

10 SIMPLY SUPPORTED BEAM RESULTS

10 Simply Supported Beam Results

10.1 Fitness Function Testing

The Simply Supported Beam Problem was optimised for a number of scenarios,
similar to the testing undertaken with the truss problem. The loading applied to
the 9m beam were point loads of 1000kN at the 1/3rd points and the optimisation
process was again run 20 times in order to establish the optimum solution for the
given scenario.

Optimising for weight only

With no consideration to other constraints and optimising for the minimum weight,
resulted in a section size of 0.2 × 1.5m - the maximum depth allowed. This section
size was selected by the GA to maximise the second moment of area of the beam,
whilst minimising weight. For a rectangular section the second moment of area is
I = bd3

12 . By maximising the depth, the greater the second moment of area and the
greater the bending resistance of the beam. The maximum deflection over the 9m
span was found to be 3mm with this section size.

Optimising for weight with displacement constraint This resulted in the same
section size as optimising for weight only as the standard loads do not cause suffi-
cient deflection for the displacement constraint to apply i.e. well within the BS8110
limits of span/500 = 18mm and span/250 = 36mm.

Optimising for weight and moment constraint The moment constraint does not
apply for the default problem as the two point loads of 1000kN do not cause sufficient
moments to reach the plastic moment of the beam.

Optimising for weight and all constraints & reinforcement The optimum so-
lution to the Simply Supported Beam problem was found to be a section size of
0.4 × 1.24m with 6T32 re-bar. The maximum deflection over the span of 9m was
found to be 3mm. The optimum solution was found in 4 to 8 seconds on average.

The optimum section was selected by the GA because it has sufficient width to pro-
vide reinforcement and is sufficiently deep to provide adequate bending resistance
from concrete alone. This result is inefficient for one major reason, no account is ta-
ken of the effect of the reinforcement upon the stiffness of the structure. This is due
to a lack of time to fully tackle the effect of reinforcement upon the bending stiffness.
Therefore, the beam design is unnecessarily deep.

49

10.2 Search Space 10 SIMPLY SUPPORTED BEAM RESULTS

Fig. 18: Optimum beam design for complete fitness function

10.2 Search Space

Although the Simply Supported beam problem has a smaller search space than that
of the truss problem, the fitness function is still exceptionally multi-modal. As with the
Ten Bar Truss, for comparison purposes, the fitness function was evaluated for every
possible solution (216 + 1 = 65536 solutions) using brute force. Whilst the Genetic
Algorithm, using a large population size returns a solution in under 10 seconds, the
brute force method took approximately 160s. This confirms results found with the Ten
Bar Truss problem, in that the GA conducts a highly efficient search of the search
space in locating the optimum solution.

Similar to the two figure produced for the truss problem, two fitness maps were crea-
ted to illustrate the multi-modality of the fitness landscape for the Simply Supported
Beam problem.

Fig. 19: Beam search space map (sorted by individual number)

50

10.2 Search Space 10 SIMPLY SUPPORTED BEAM RESULTS

Fig. 20: Beam search space map (sorted by fitness value)

51

11 DISCUSSION

Part IV. Discussion & Conclusions

11 Discussion

In order to apply optimisation to structural systems, the method selected must be
easily applied to different design problems, use a minimum of auxiliary information,
attempt to find the global optimum and be able to solve problems with discrete va-
riables. Genetic Algorithms were selected as the optimisation method for this work
because they not only satisfy these criteria, they are a robust & powerful global
search technique which is relatively easy to implement.

GAs use relatively simple principles inspired from evolution, namely survival of the
fittest and genetic reproduction. By excluding problem specific information from the
optimisation process, a Genetic Algorithm is generic and can be applied to solve
different problems. To apply a GA to a problem, all that is required is the creation
of a fitness function, which models the problem and objectively assigns a fitness
value to a solution. GAs exploiting nothing than the similarities between highly fit
individuals and using probabilistic experimentation to evolve fitter solutions; and by
working from a diverse populations of designs simultaneously, the implicit parallelism
of a genetic algorithm ensures that local optima are ignored and the global optimum
is obtained. [3, 2]

The Genetic Algorithm used in this work was developed from scratch, with no refe-
rence to existing GA implementations and using only high-level conceptual pseudo-
code. The performance, efficiency and apparent intelligence of the GA has at times
surprised the author; the complicated, powerful and oftentimes surprising behaviour
resulting from the author’s handiwork is something akin to watching a child grow. To
quote Davis, in his “Handbook of Genetic Algorithms” , he remarked that:

”... from their beginnings in Holland’s research, [genetic algorithms] have
inspired passion in their adherents. Perhaps this is because they sur-
prise us in interesting ways and because they exemplify processes we
believe may have lead to our own existence. Whatever the reason, there
is something profoundly moving about linking a genetic algorithm to a dif-
ficult problem and returning later to find that the algorithm has evolved a
solution that is better than the one a human found.” [2]

Despite their seemingly unrelated origins, using principles from biology rather than
engineering, in this work the ability for Genetic Algorithms to quickly find the global
optimum in large and exceptionally multi-modal search spaces has been shown.
The classical truss optimisation problem was implemented as a benchmark for the
GA and with a search space of 220 solutions, on average significantly less than 0.5%
of potential solutions were evaluated in identifying the global optimum. However,
considering that an exhaustive search of all 1,048,577 potential solutions for the Ten
Bar Truss takes marginally over an hour, the advantages of a Genetic Algorithms
seem to be outweighed by the effort involved in implementing or using them.

However, the example problems presented in this paper are relatively simple, with
fitness functions which can evaluate an individual in milliseconds. In more realistic
applications, such as the optimisation of large structures under many load cases, the
evaluation of the fitness of a single potential design may take minutes or even hours.

52

11 DISCUSSION

Additionally, for problems with many variables and/or where many potential solutions
exist, the size of the search space increases rapidly. Even a modest increase in
the length of the bit-string, leads to an exponential growth in the size of the search
space. The Ten Bar Truss uses a bit-string of length 20 to represent 10 elements
with a choice of 4 cross-sections. For example, a 50% increase in bit-string length
to 30 bits - perhaps greater choice of cross-sections or additional variables - would
result in 1,073,741,825 potential solutions, a 1024% increase in search space. Even
generously assuming the same average execution time of the Ten Bar Truss (5 milli-
seconds), evaluating a search space of this size would take 1492 hours or a little over
62 days. It is scenarios such as this where Genetic Algorithms truly become useful,
where the difference in time between using a GA and an exhaustive search is mea-
sured in hours, days or even weeks. To continue the example, evaluating say 0.5%
of the search space in 8 hours with a GA is infinitely more preferable to exhaustively
searching 100% of solutions in a little over 2 months.

Nevertheless, the role of Genetic Algorithms in the optimisation of problems - let
alone structural problems - is not restricted to those which would take a long time to
find the optimum via brute-force. With a well formed fitness function which effectively
implements the design criteria or requirements, a solution can often be found by a
genetic algorithm which is better than that which could be manually designed - or at
least found in less time.

Clearly a Genetic Algorithm is an effective optimisation method in terms of locating
global optima both in terms of efficiency and efficacy. They have been used in a
wide range of applications - from parametric design of aircraft to integrated systems
design as well as process optimisation and scheduling [13, 2].

In the author’s opinion, the major factor in the lack of use of optimisation methods in
engineering is that of practicality. To apply a genetic algorithm to a problem, a fitness
function must be created and, being the key to optimisation, it must be carefully de-
veloped. This is to ensure it reflects the design requirements and enforces design
constraints. Additionally, it must be able to effectively evaluate the fitness of an in-
dividual design based upon the results of a FEM analysis. Currently if the design of
a steel framed multi-storey structure was to be optimised using GAs, time and effort
must be invested in developing a fitness function for this type of problem. To then
subsequently optimise the design of a stadium or a suspension bridge, new fitness
functions would need to be created.

Some Genetic Algorithm products do exist - such as Evolver add-in for Excel from
Palisade - however these tend to be of limited use to those seeking to optimise pro-
blems outside of a spreadsheet environment. Similarly the author believes it is likely
that Genetic Algorithms, as well as other optimisation methods, will gradually be sub-
sumed into other software to become standard components in design packages. For
optimisation methods to be of as much use to engineering as FEM is today, then
they must be integrated with existing tools. For complicated problems, generic opti-
misation methods are likely to be of less practicality than those more specialised to
the task at hand. For example, if an FEM analysis package integrated an structural
design optimisation function then this is more immediately useful to the average en-
gineer than some bespoke standalone solution. As with FEM, the need for education
and training would be required to enable GAs to be used by engineers. However, ho-
pefully much of detail on the operation of the GA would be abstracted away from the
user - similar to how FEM is presented today.

53

12 CONCLUSIONS

12 Conclusions

12.1 Detailed Conclusions

As can be seen from the results, the Genetic Algorithm is able to quickly locate the
optimum solution even in exceptionally complicated search spaces. In any given
optimisation run, the percentage of possible solutions evaluated is negligible. For
example, with the Ten Bar Truss, less than 0.17% of possible solutions were evaluated
on average in the process of locating the optimum solution. Considering that the
search space for the Ten Bar Truss is 220 + 1 = 1048577, this represents less than
2000 evaluations. The average optimisation run took approximately 10 seconds -
compared to 68 minutes to evaluate every possible solution by brute force. Similar
results were noted for the Simply Supported Beam, although approximately scaled
for its significantly smaller search space. This remarkable performance is the key
strength of Genetic Algorithms.

Both the truss and beam problems have relatively computationally trivial fitness func-
tions, which can evaluate the fitness of an individual in milliseconds. Consider, ho-
wever, if the Genetic Algorithm was applied to problems whose fitness function was
more computationally demanding; for example if it called some complex mathemati-
cal model or finite element analysis and took several minutes to evaluate the fitness
of an individual. The performance benefit of using a Genetic Algorithm and only
needing to evaluate a small percentage of the search space is clear. Alternative me-
thods such as evaluating every possible solution or randomly sampling the search
space are time consuming and inefficient. Other optimisation approaches which use
derivatives require the function to be differentiable and in many cases it many not be.
Irregardless, even if the fitness function was differentiable, the point to point methods
of many mathematical optimisation techniques are prone to locating local optima.
Genetic Algorithms use no problem specific or auxiliary information, such as deriva-
tives. They are highly adaptable, robust and implicitly parallel. The population based
approach of a Genetic Algorithm, combined with the powerful heuristics which result
from reproduction and selection, is able to efficiently locate the optimum using only
similarities between highly fit solutions.

The parameters of a Genetic Algorithm have great effect upon the optimisation pro-
cess. The population size used with a GA driven optimisation process is the key
factor in determining its effectiveness. As the results show, the greater the popula-
tion size, the more likely the algorithm is to converge to the optimum solution. Smal-
ler population sizes reduces the diversity of potential solutions, reduces the mating
pool for genetic operations and reduces the likelihood that an optimal solution will
be evolved. For the fitness functions presented in this work, a large population size
imposes minimal extra computational demand due to their triviality. Therefore for
these problems, there is no advantage to using a smaller population size and this
also introduces the risk that the algorithm may converge to a sub-optimal solution.
However, again considering a problem whose fitness function is computationally ex-
pensive, a lower population will reduce optimisation times significantly, whilst at the
risk of returning a sub-optimal solution. In this case it may be preferable to use a rea-
sonably sized population, balancing the need for genetic diversity and a manageable
optimisation time.

In terms of the genetic operators of the algorithm, mutation and elitism play a crucial
but complementary role to that of crossover. In combination with selection, crossover

54

12.2 General Conclusions 12 CONCLUSIONS

provides the Genetic Algorithm with the majority of its ability to locate the optimum
solution. However, a limited rate of mutation ensures that the diversity of the popula-
tion is maintained, introducing new novel genetic features into the gene pool. Elitism
ensures that the fittest solutions are not accidentally lost in the evolutionary process
and can dramatically increase the performance of the algorithm. The loss of a fit
solution can cause regression in the overall fitness of the population and this has a
detrimental effect on optimisation times.

The most effective GA parameters will vary from problem to problem and determi-
ning these will require some experimentation for a given problem. Nevertheless, in
general, using a population size appropriate to the problem at hand as well as elitism
and sparing mutation will ensure the GA is effective at solving a given problem.

The fitness functions are also a fundamental and central part of the optimisation
process. The optimisation results from the Ten Bar Truss problem are generally sen-
sible structures from a design point of view and this results from the design of the
fitness function. The designs are driven by the implementation of the fitness func-
tion, which prioritises the minimisation of weight, constrained by certain structural
considerations. The optimum result as seen in Figure 14 on page 46 is a reasonable
structure considering the loads applied and the load paths; elements not essential to
the support of the loads are a smaller section size than those which are. It should be
emphasised that the algorithm has no structural design knowledge or understanding
of load paths; it simply applies the measure of structural fitness as defined by the
designer.

The beam optimisation results are also reasonably sensible designs, however some
inconsistencies exist. Due to a lack of time to tackle the issue fully, beam designs
rely entirely upon the capacity of the concrete to resist the loads applied. Whilst
reinforcement is designed to support the maximum moment, this only ensures that
adequate space is available in the cross-section to fit adequate reinforcement. The
stiffness of the reinforcement is not taken into consideration in the design of the
section. Therefore, the beam sections produced are unnecessarily deep since no
account of the re-bar is made in the bending resistance of the section. However,
the problem does serve as a proof of concept, showing that Genetic Algorithms can
optimise problems with continuous variables, as well as those with discrete variables
such as the truss.

On the whole, Genetic Algorithms have the potential to make a hugely effective
contribution to engineering. The intelligent application of computers to solve de-
sign problems is, in the author’s opinion, likely to be a field of increasing importance
in the future of engineering.

12.2 General Conclusions

The objectives of this work were to develop a bespoke Genetic Algorithm from scratch,
use it to solve design problems and, in doing so, investigate the effectiveness of GAs
for the optimisation of structural systems. The author believes that the implementa-
tion of the Genetic Algorithm was a success, given it was implemented in a relatively
short time in a language with which the author had limited experience. The problem
agnostic design of the Genetic Algorithm enabled the author to rapidly implement the
problem specific code required to investigate two different problems.

55

12.3 Future perspectives 12 CONCLUSIONS

Admittedly the current need to develop problem specific code is prohibitive to more
widespread use of Genetic Algorithms, in that the majority of engineers have no pro-
gramming experience. However, it is a relatively small leap of imagination to suggest
that if optimisation methods became part of Finite Element Modelling packages, then
GAs would become another useful tool in the engineer’s design toolbox. The ability
for engineers to define an FEM model, define design requirements and arrive at an
optimum solution for the given constraints could be invaluable. By replacing much of
the manual iterative process (designing a solution, analysing it and then iteratively
redesigning) with an intelligent & automated process which would instead answer
the question: “what should the design be, in order to optimally satisfy the requi-
rements placed upon the structure?”. Nevertheless, optimisation methods will not
replace engineers; common sense, design judgement, engineering knowledge and
skills cannot be replaced by a computer program.

Today Finite Element Modelling is almost invaluable in many aspects of engineering.
FEM enables structures to be designed faster, more efficiently and with increased
accuracy over manual methods. It also permits more complicated and elaborate
structures to be constructed with improved confidence in the design. With optimisa-
tion the ability to rapidly prototype many potential designs at the speed of a computer
rather than manually is likely to be of tremendous advantage to engineering design.

This work has shown that whilst Genetic Algorithms are relatively simple to imple-
ment and use relatively simple methods, their complex, powerful and often impres-
sive behaviour is particularly effective at optimisation. It is the authors opinion that
optimisation will play an increasing role in the field of structural engineering as it
becomes more accessible and more practical.

Whilst in some cases problem specific optimisation techniques may be more sui-
table, as an all round technique Genetic Algorithms outstrip most other optimisation
techniques. Their ability to robustly handle exceptionally complicated problems, with
discrete variables and non-linear interaction between variables, is almost unparal-
lelled. GAs are remarkably intelligent in their traversal of even the most complex
search space, evaluating as few potential solutions as possible in locating an opti-
mum design. As the complexity of problems considered increases, the greater the
attractiveness of Genetic Algorithms.

In summary, the author believes that there is great promise in using GAs as a design
optimisation method for structural systems, in conjunction with existing tools.

12.3 Future perspectives

With the inexorable advance of technology and the exponential increase in compu-
tational power available, the use of computers is very likely to continue to increase in
engineering design. Whilst this will enable more complicated FEM models to be ana-
lysed quicker or more detailed multi-scale modelling, it will also allow the application
of optimisation to the design of large structures to become common place.

The fields of computational engineering and high performance computing represent
a considerable opportunity to improve engineering. However to fully capitalise on
these advances, new techniques and approaches must be considered. It would be -
and is - a terrible misuse of the power of computers to simply transfer existing manual
processes into an electronic form. Whilst FEM has almost entirely replaced manual
analysis within engineering design, the advantages computers have to offer are yet to

56

12.3 Future perspectives 12 CONCLUSIONS

be exploited fully. As computers work many times faster and more efficiently than hu-
mans can, with sufficient guidance, computers can evaluate many potential designs,
locating the optimum design without requiring the constant attention of an engineer.
By automating much of the laborious design process, more effective utilisation of
resources and cost savings can be made.

57

References

Part V. References

References

[1] V.V. Toropov and S.Y. Mahfouz. Design optimization of structural steelwork
using a genetic algorithm, fem and a system of design rules. Engineering Com-
putations, 18(3/4):437–459, 2001.

[2] Lawrence Davis. Handbook of Genetic Algorithms. Van Norstrand Reinhold,
1991. ISBN 0-442-00173-8, 1-23 & 99-101.

[3] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press. ISBN 0-262-
63185-7, 1-31.

[4] John H. Holland. Adaption in Natural and Artificial Systems. The University of
Michigan, 1975. ISBN 0-262-58111-6, 1-32.

[5] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, 1989. ISBN 0-201-15767-5,
1-29 & 309-312.

[6] D.E. Goldberg and M. P. Samtani. Engineering optimization via genetic algo-
rithm. Proceedings of the Ninth Conference on Electronic Computation, pages
471–482, 1987.

[7] Mathworks. Matlab product description page, 2009.
http://www.mathworks.com/products/matlab/.

[8] Sweden Division of Structural & Solid Mechanics, Lund University, 2009.
http://www.gorkon.byggmek.lth.se/Calfem/.

[9] C. Ellis. A bluffer’s guide to genetic algorithms. Engineering Design Newsletter,
Science and Engineering Research Council, 1993.

[10] S. Ravjeev and C.S. Krishnamoorthy. Discrete optimization of structures using
genetic algorithm. J.S. Engng, ASCE, 118(5):1233–1250, May 1992.

[11] M.R. Ghasemi, E. Hinton, and R.D. Wood. Optimization of trusses using genetic
algorithms for discrete and continuous variables. Engineering Computations,
6(3):272–301, 1999.

[12] British Standards Institution. BS8110-1:1997 Structural use of concrete - Part
1: Code of Practice for design and construction, 1997.

[13] Charles L. Karr and L. Michael Freeman. Industrial Applications of Genetic
Algorithms. CRC Press. ISBN 0-849-39801-0, 1-14 & 35-48.

The reference list above is generated & formatted automatically using LATEX 2ε and
the default BibTEX numerical style.

58

A ANNOTATED GA FLOWCHART

Part VI. Appendices

A Annotated GA Flowchart

Start

User input of
problem data and
GA parameters

Structural data, lookup
tables etc

Default values, GA
parameter profiles,

preset problem data.

Begin Genetic
Optimisation

Generate
initial random

encoded
population

Loop

Decode each
individual in the

population into real
values

Evaluate the
fitness of

each
individual

Select best
ranked

individuals to
reproduce

Elitism?

Breed new
generation

via crossover
& mutation

Fitness function

Have the solutions
converged?

Generation/time limit?
StopYes

Loop

Optimum GA
parameters

How best to
evaluate the

fitness?

Need
CALFEM
resultants

Why use GA?
How and why does it work?

What other methods are there? Why is
GA better? Is it?

What is the knock-on effect of using a
particular encoding?

What is the effect of changing the
population size?

How does it compare to
the benchmark?

No

Why use Elitism?
What is its effect on the rate of

convergence?

What is the effect of different values?
What is the effect of only using crossover?
Why use mutation? What does it achieve?

How best to
encode?

Population size?

Convergence i.e. successive
iterations do not result in better

solutions.

Fig. 21: Annotated GA Flowchart

59

B TEN BAR TRUSS WEIGHT FITNESS CALCULATION

B Ten Bar Truss weight fitness calculation

Density = 7850kg/m3

Amin = 11.2cm2

Amax = 100cm2

W = DAL

Element Length (m) Wmin (kg) Wmax (kg)
1 9.00 79.13 706.50
2 9.00 79.13 706.50
3 9.00 79.13 706.50
4 9.00 79.13 706.50
5 9.00 79.13 706.50
6 9.00 79.13 706.50
7 12.73 111.90 999.14
8 12.73 111.90 999.14
9 12.73 111.90 999.14

10 12.73 111.90 999.14∑
922.38 8235.57

For the weight constant, say round max weight from 8235.57 to 9000?
⇒ Take weight constant as 9000.
Consequently, fitness values range from 764.3 to 8077.62 for the heaviest & lightest
possible structures respectively.

60

C TYPICAL VISUALISATIONS

C Typical Visualisations

C.1 Truss

Fig. 22: Truss FEM Visualisation

Fig. 23: Truss Fitness Graph over Iterations

61

C.1 Truss C TYPICAL VISUALISATIONS

Fig. 24: Truss Final Design Visualisation

62

C.2 Beam C TYPICAL VISUALISATIONS

C.2 Beam

Fig. 25: Beam FEM Visualisation

Fig. 26: Beam Fitness Graph over Iterations

63

C.2 Beam C TYPICAL VISUALISATIONS

Fig. 27: Beam Final Design Visualisation

64

D GA MATLAB CODE

D GA MATLAB Code

• GA_Controller (page 66): Generic procedural code representing the standard
GA algorithm.

• GA_Crossover (page 70): Implementation of genetic crossover.

• GA_Elitism (page 73):Selects top x number individuals from the population ar-
ray to preserve for the next generation.

• GA_Mutation (page 72): Randomly mutate (i.e. invert) a percentage of bits in
the new population.

• GA_SelectionRouletteWheel (page 74): Uses the roulette wheel selection pa-
radigm to select individuals from population

65

D.1 /ga/GA_Controller.m D GA MATLAB CODE

D.1 /ga/GA_Controller.m

% Written by: Gavin Reynolds, 2008-2009

% Copyright (c) 2009 Gavin Reynolds
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 3
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.

% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.

%% GA Controller: Generic procedural code representing the standard Genetic algorithm.
function GA_Controller(problemType, maxNumIterations, populationSize, mutationPercent,

elitismPercent, mutateElite, options)
% 1. Generate initial population
% 2. Loop until completion (as determined by this controller)
% a) Evaluate fitness of the population members
% b) Select fittest members of the population to reproduce
% c) Give birth of offspring via genetic operations to form new pop.
% 3. Display and save results.
%Example: GA_Controller(’Ten Bar Truss’, 250, 40, 0.005, 0.05, 0)

if (exist(’options’, ’var’) == 0)
options = [];

end

try
resultDir = evalin(’base’,’resultDir’);

catch ME
resultDir = ’’;

end

%Ensuring that the population size is a multiple of 2.
if (mod(populationSize,2) ~= 0)

%this will only be seen if using GA_Controller directly and the user specifies an
odd population size

disp(’The population size must be a multiple of 2.’)
return;

end;

%% Set fitness function based on problem type
switch problemType

case ’Ten Bar Truss’
fitnessFunction = @fitness_Truss;
sectionProperties = @getCALFEMtruss_sectionProperties;
structureDiagram = @create_TrussDiagram;
saveResultsAs = ’tenbartruss’;
%bitstringLength comes from 2 bits per design variable (i.e. cross-sectional

area),
%10 elements, therefore 2x10 = 20 char bitstring
bitstringLength = 20;
disp(’Solving 10 element truss problem type as in Ghasemi et al.’)

case ’Simply Supported Beam’
fitnessFunction = @fitness_Beam;
sectionProperties = @getCALFEMbeam_sectionProperties;
structureDiagram = @create_BeamDiagram;
saveResultsAs = ’simplysupportedbeam’;
%bitstringLength comes from 8 bits per design variable (i.e. breadth and depth),
%therefore, 2x8 = 16 char bitstring
bitstringLength = 16;
disp(’Solving 3 element beam problem type.’)

otherwise
disp(’Unknown problem type’)
errordlg(’Unknown problem type’,’Error’);
return

66

D.1 /ga/GA_Controller.m D GA MATLAB CODE

end

setFigures();

%% Generate initial random population
%A matrix of size populationSize by bitstringLength with values between 0 and 1
populationArray = logical(floor(rand(populationSize, bitstringLength) * (2)));
%populationArray = randint(populationSize, bitstringLength, [0 1]);

%% Begin loop, set termination conditions, allowing for early terminiation
numIterations = 0;
continueLoop = true;
countSinceLastFitnessImprovement = 0;
iterationBestFitnessArray = [];
tic; %start the clock

while continueLoop == true

% Increment the iteration number (there is no increment operator...)
numIterations = numIterations + 1;
disp(’Iteration:’)
disp(numIterations)

disp(’Population Array:’)
disp(populationArray)

fitnessArray = zeros(populationSize,2, ’double’);

%% For each member/row of the population array, evaluate fitness
for popNum=1:populationSize

individual = populationArray(popNum, :);

fitnessArray(popNum) = popNum;
fitnessArray(popNum,2) = fitnessFunction(individual, popNum, options);

end;

%% GA Operations
%sort the population array by the fitness value
[sortedFitnessArray, sorter] = sort(fitnessArray(:, 2), ’descend’);
populationArray = populationArray(sorter,:);

disp(’Sorted Population:’)
disp(populationArray)

fittestIndividual = populationArray(1,:);
bestFitness = sortedFitnessArray(1,:);

%Store the fittest individual if better than previous fitnesses
if (bestFitness >= max(iterationBestFitnessArray))

fittestIndividualOfRun = fittestIndividual;
end

disp(’Fitness Array:’)
disp(fitnessArray(:,2))

disp(’Sorted Fitness Array:’)
disp(sortedFitnessArray)

iterationBestFitnessArray(numIterations,:) = bestFitness;
iterationAverageFitnessArray(numIterations,:) = mean(sortedFitnessArray);

newPopRemaining = populationSize;
%% Elitism
%Elitism is specified as a percentage (0.0 to 1.0) of the population
%Get x fittest members and add straight to new population.
%The number selected via elitism must be multiples of 2.
if elitismPercent ~= 0

elitism = ceil(elitismPercent * populationSize/2)*2;
[newPopulationArray, newPopRemaining] = GA_Elitism(elitism, populationArray,

bitstringLength, newPopRemaining);
else

elitism = 0;
newPopulationArray = populationArray;

end;

67

D.1 /ga/GA_Controller.m D GA MATLAB CODE

%% Selection/Survival of the Fittest
% Using Roulette Wheel Selection
% Calculate sum of all chromosome fitnesses
totalFitness = sum(sortedFitnessArray);

% Select the next population (minus the number selected through via
% elitism). Those selected via elitism can still be selected again by
% the roulette wheel
selectedPopNumArray = zeros(newPopRemaining,1, ’double’);
for i=1:newPopRemaining

[selectedPopNum] = GA_SelectionRouletteWheel(sortedFitnessArray, totalFitness,
populationSize);

selectedPopNumArray(i,:) = selectedPopNum;
end;

selectedPopulationArray = populationArray(selectedPopNumArray,:);

%% Crossover
%A random chance to get crossed over, and a random point within each
%crossed over pair for crossover
numCrossoverPairs = newPopRemaining/2;
%disp(’Crossover Pairs:’)
%disp (numCrossoverPairs)

% Do the crossover
[newPopulationArray] = GA_Crossover(numCrossoverPairs, bitstringLength,

selectedPopulationArray, newPopulationArray);

%% Mutation
[newPopulationArray] = GA_Mutation(mutationPercent, elitism, mutateElite,

populationSize, bitstringLength, newPopulationArray);

%% New Population
populationArray = newPopulationArray;

%% Termination conditions
if (numIterations == maxNumIterations), continueLoop = false; end

if (numIterations > 1) && max(iterationBestFitnessArray) ==
iterationBestFitnessArray(numIterations-1)
%if the best fitness has not improved then increment the count
countSinceLastFitnessImprovement = countSinceLastFitnessImprovement + 1;

elseif (numIterations > 1) && max(iterationBestFitnessArray) ~=
iterationBestFitnessArray(numIterations-1)
%if the best fitness has improved, reset the count
countSinceLastFitnessImprovement = 0;

end;

if countSinceLastFitnessImprovement == 20, continueLoop = false; end

end;

executionTime = toc;

disp(’Num Iterations:’)
disp(numIterations)
disp(’Num Iterations since last fitness improvement:’)
disp(countSinceLastFitnessImprovement)

%% Diagrams
%Fitness diagram
gaParameters = [populationSize; mutationPercent; elitismPercent; mutateElite];
results = [numIterations; countSinceLastFitnessImprovement; max(

iterationBestFitnessArray); executionTime];
create_FitnessGraph(iterationBestFitnessArray, iterationAverageFitnessArray,

gaParameters, results, problemType)

if (max(iterationBestFitnessArray)~=0)
%Structure diagrams
fittestSolution = sectionProperties(fittestIndividualOfRun, options);
structureDiagram(fittestSolution, options);

end

%% Result saving
%No UNIX/Epoch time in MATLAB...
epochStart = [1970 01 01 0 0 0];

68

D.1 /ga/GA_Controller.m D GA MATLAB CODE

now = clock();
%UNIX Time is a signed 64bit integer...
runTime = int64(floor(etime(now, epochStart)));

%Save results to csv form, in specified results dir if provided or into
%current working directory otherwise (i.e. if resultsDir var is blank)

save_Results(runTime, gaParameters, results, saveResultsAs, resultDir, options);

%Save figures to png images, in specified results dir if provided or into
%current working directory otherwise (i.e. if resultsDir var is blank)
saveFigures(runTime, ’png’, saveResultsAs, resultDir);

69

D.2 /ga/GA_Crossover.m D GA MATLAB CODE

D.2 /ga/GA_Crossover.m

%% GA_Crossover: Implementation of genetic crossover.
% Select x crossover pairs from the remaining population (or all if no
% elitism), for each pair of parents select a crossover point and swap the bits
% after the crossover point, creating the offspring/children.
% Written by: Gavin Reynolds, 2008-2009
function [newPopulationArray] = GA_Crossover(numCrossoverPairs, bitstringLength,

selectedPopulationArray, newPopulationArray)

newPopRemaining = numCrossoverPairs*2;
avaliableParents = (1:newPopRemaining)’;
for pairNum = 1:numCrossoverPairs

%disp(’Crossover Pair:’)
%disp (pairNum)

%% Parent numbers
%get the parent numbers, ensuring no identical numbers are selected

parentNums(1,:) = floor(rand * (newPopRemaining)) + 1;
%parentNums(1,:) = randint(1,1,[1 newPopRemaining]);
j = floor(rand * (newPopRemaining)) + 1;
%j = randint(1,1,[1 newPopRemaining]);
while j == parentNums(1)

j = floor(rand * (newPopRemaining)) + 1;
%j = randint(1,1,[1 newPopRemaining]);

end;
parentNums(2,:) = j;

%disp(’Parent Nums:’)
%disp (parentNums)

%% Crossover point
%Crossover point is between 0 (i.e. parents swap all bits) to
%bitStringLength i.e. nothing is swapped
crossoverPoint = floor(rand * (bitstringLength+1));
%crossoverPoint = randint(1,1,[0 bitstringLength]);

%disp(’Crossover Point:’)
%disp (crossoverPoint)

parents = zeros(2, bitstringLength);
%% Extracting parents
for i = 1:2

parents(i, :) = selectedPopulationArray(parentNums(i), :);
end;

% remove the two parents from the population array after they have been copied out
...

avaliableParents(parentNums(1),:) = [];
%ensure the correct row is removed, i.e. if the first row removed
%was before the second row then remove the second row num - 1
if parentNums(1) < parentNums(2)

avaliableParents(parentNums(2)-1,:) = [];
else

avaliableParents(parentNums(2),:) = [];
end;

selectedPopulationArray = selectedPopulationArray(avaliableParents, :);

newPopRemaining = newPopRemaining - 2;
avaliableParents = (1:newPopRemaining)’;

%disp(’Parents:’)
%disp (parents)

%% Do the crossover

switch crossoverPoint
case {0, bitstringLength}

%if the crossover point is 0 or the bitstringLength just
%copy the parents through as the children. The order
%makes no difference i.e. in the case of 0 where the
%parents should really be switched, but doesn’t matter
children = parents;

70

D.2 /ga/GA_Crossover.m D GA MATLAB CODE

otherwise
%Take the first crossoverPoint bits and transfer straight to children
children = parents(:,1:crossoverPoint);
%Swap the remaining bits
children(1,crossoverPoint:bitstringLength) = parents(2,crossoverPoint:

bitstringLength);
children(2,crossoverPoint:bitstringLength) = parents(1,crossoverPoint:

bitstringLength);
end;

%disp(’Children:’)
%disp(children)
%disp(’=======’)

%append children to the new population array
newPopulationArray = logical(vertcat(newPopulationArray,children));

end;
end

71

D.3 /ga/GA_Mutation.m D GA MATLAB CODE

D.3 /ga/GA_Mutation.m

%% GA_Mutation: Randomly mutate (i.e. invert) a percentage of bits in the new population
array.

% Introduces new novel genetic features into the population and maintains genetic
diversity.

% Written by: Gavin Reynolds, 2008-2009
function [newPopulationArray] = GA_Mutation(mutationPercent, elitism, mutateElite,

populationSize, bitstringLength, newPopulationArray)

%Calculate the number of bits to mutate
mutateNumBits = ceil(mutationPercent*populationSize*bitstringLength);

%Set mutation limits
%If mutateElite is off, stop mutation of the Elites by setting the
%rantint limits to 1 + the number of elites
if mutateElite == 0

mutateRowStart = 1 + elitism;
else

mutateRowStart = 1;
end;

%Select mutateNumBits bits at random and invert value
for i = 1:mutateNumBits

mutateRow = floor(rand * (populationSize+1-mutateRowStart)) + mutateRowStart;
%mutateRow = randint(1,1,[mutateRowStart bitstringLength]);
mutateCol = floor(rand * (bitstringLength))+1;
%mutateCol = randint(1,1,[1 populationSize]);
currentBitValue = newPopulationArray(mutateRow, mutateCol);
switch currentBitValue

case 0
newBitValue = 1;

case 1
newBitValue = 0;

end;
newPopulationArray(mutateRow, mutateCol) = newBitValue;

end;
end

72

D.4 /ga/GA_Elitism.m D GA MATLAB CODE

D.4 /ga/GA_Elitism.m

%% GA_Elitism: Selects top x number individuals from the population array to preserve
for the next generation.

% Written by: Gavin Reynolds, 2008-2009
function [newPopulationArray, newPopRemaining] = GA_Elitism(elitism, populationArray,

bitstringLength, newPopRemaining)

%create new population array. false() = logical(zeros())
newPopulationArray = false(elitism, bitstringLength);
for eliteNum = 1:elitism

newPopulationArray(eliteNum,:) = populationArray(eliteNum,:);
end;
newPopRemaining = newPopRemaining - elitism;
%disp (newPopulationArray)
end

73

D.5 /ga/GA_SelectionRouletteWheel.m D GA MATLAB CODE

D.5 /ga/GA_SelectionRouletteWheel.m

%% GA_SelectionRouletteWheel: Uses the roulette wheel selection paradigm to select
individuals from population

% The greater the fitness the greater the proportion of the "wheel" an individual is
given therefore greater chance of being selected.

% However, does not exclude lower fitness individuals from being selected i.e. they have
a lower chance of being selected

% Written by: Gavin Reynolds, 2008-2009
function [popNum] = GA_SelectionRouletteWheel(sortedFitnessArray, totalFitness,

populationSize)

r = rand*totalFitness;
s = 0;
for popNum=1:populationSize

%Go through the population and incrementally sum fitnesses
%until equal to or greater than r
s = s + sortedFitnessArray(popNum,:);
if (s >= r)

%return this population number
return

end;
end;
end

74

E PROBLEM SPECIFIC MATLAB CODE

E Problem Specific MATLAB Code

• Ten Bar Truss

– fitness_Truss.m (page 76): Returns an objective fitness value for the sup-
plied individual truss design

– solver_CALFEMtruss.m (page 78): CALFEM Solver for 10 element truss,
adapted from CALFEM example exs4

– getCALFEMtruss_geometry.m (page 80): Static function providing geo-
metry for the 10 element truss.

– getCALFEMtruss_sectionProperties.m (page 81): Returns section pro-
perties for the 10 elements based upon the bit-string of an individual

• Simply Supported Beam

– fitness_Beam.m (page 83): Returns an objective fitness value for the sup-
plied individual beam design

– solver_CALFEMbeam.m (page 85): CALFEM Beam solver, adapted from
CALFEM example exs3

– getCALFEMbeam_sectionProperties.m (page 87): Returns section size
based upon the bit-string of an individual

– getCALFEMbeam_reinforcement.m (page 88): Get CALFEM beam rein-
forcement solution for a given breadth, depth and maximum moment

75

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

E.1 Ten Bar Truss

E.1.1 /fitness/fitness_Truss.m

%% fitnessTenBarTruss: Returns an objective fitness value for the supplied individual
truss design

% Written by: Gavin Reynolds, 2008-2009
function [fitness] = fitness_Truss(individual, popNum, options)

elementArray = getCALFEMtruss_sectionProperties(individual);

%Solver_CALFEMtruss solves for and returns:
%a: Displacement (including boundary values) (m)
%Q: Reaction force vector (kN)
%N: Element forces (kN)
%O: Stresses (kN/m^2)
%W: Weight (kg)

%Additionally, for convenience, it returns the following constants:
%L: Element Length (m)
%E: Youngs Modulus (currently a scalar) (kN/m2)
[a,Q,N,O,W,L,E]=solver_CALFEMtruss(elementArray, popNum, options);

%% Euler Buckling Load check
% Effective length = Length
% Pinjointed => K=1.0
% Have load, length, therefore Euler Buckling Load
% Two possible methods:
% 1) F=(pi^2*E*I)/(K*L)^2
% 2) Assuming K=1.0, O = F/A = (pi^2*E)/(L/r)^2 where O = Stress
% => F = ((pi^2*E)/(L/r)^2)*A
%
%Using method 1...
%r = cell2mat(elementArray(:,3));
I = cell2mat(elementArray(:,2));

eulerF = (pi^2*E.*I)./(1.0.*L).^2;

%Method 2:
%A = elementArray(:,1);
%F = ((pi^2*E)./(L./r).^2).*A;

%Using Relational operators, to perform an element by element comparison of
%the two arrays. Returns a logical array of the same size, with elements set to logical

1 (true)
%where the relation is true, and elements set to logical 0 (false) where it is not.

isBuckled = abs(N) >= eulerF;
numElementsBuckled = sum(isBuckled);
numElementsBuckledPenalty = (1-numElementsBuckled/10)^2;

bucklingRatio=zeros(10,1, ’double’);
for i=1:10

elementBucklingRatio = abs(N(i,:))/eulerF(i,:);
if (elementBucklingRatio > 1)

elementBucklingRatio = 1;
end;
bucklingRatio(i) = elementBucklingRatio;

end;

elementFitness = (1-bucklingRatio).^2;

bucklingFitness = sqrt(sum(elementFitness)/10)*numElementsBuckledPenalty;

%% Yield Stress Check
%An approximate Steel Yield Stress is 250MPa = 250N/m2
%Corus Celsius 355 products have Yield Stress 355Mpa = 355e9 N/m2 = 355e6 kN/m2
yieldStress = 355e6;
isYielded = abs(O) >= yieldStress;
numElementsYielded = sum(isYielded);
numElementsYieldedPenalty = (1-numElementsYielded/10)^2;

yieldingRatio = zeros(10,1, ’double’);
for i=1:10

elementYieldingRatio = abs(O(i,:))/yieldStress;

76

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

if (elementYieldingRatio > 1)
elementYieldingRatio = 1;

end;
yieldingRatio(i) = elementYieldingRatio;

end;

elementFitness = (1-yieldingRatio).^2;
yieldingFitness = sqrt(sum(elementFitness)/10)*numElementsYieldedPenalty;

%% Displacement limit
%Say use two limits, approximately ULS and SLS?
%Displacements over ULS limit penalised severely.
%Displacements between SLS and ULS limits penalised.
%Displacements under SLS limit OK.
ulsDisplacementLimit = 60e-3;
slsDisplacementLimit = 30e-3;

maxDisplacement = max(abs(a));

if (maxDisplacement <= slsDisplacementLimit)
displacementFitness = 1.0;

elseif (maxDisplacement > slsDisplacementLimit && maxDisplacement < ulsDisplacementLimit
)
displacementFitness = (ulsDisplacementLimit - maxDisplacement)/slsDisplacementLimit;

else
displacementFitness = 0;

end;

%% Fitness calculation
weightFitness = 9000-sum(W);

fitness = weightFitness * displacementFitness * yieldingFitness * bucklingFitness;
end

77

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

E.1.2 /solvers/solver_CALFEMtruss.m

%% CALFEM Solver for 10 element truss, adapted from CALFEM example exs4
% Adapted and developed by: Gavin Reynolds, 2008-2009
function [a,Q,N,O,W,L,E]=solver_CALFEMtruss(elementArray, popNum, options)
% return a - Displacements (m)
% return Q - Reactions (kN)
% return N - Normal forces (kN)
% return O - Stresses (kN/m^2)
% return W - Weight (kg)
% return L - Length of elements (m)
% return E - Youngs Modulus (kN/m2)

A = cell2mat(elementArray(:,1));

%STEEL Young’s Modulus is 210GPa = 210e9 N/m2 = 210e6 kN/m2
E = 210e6;
% STEEL Density is 7850 kg/m3 => Weight = Density * Volume
D = 7850;

%----- Get geometry of the structure from include ---------------

[Edof, Ex, Ey]= getCALFEMtruss_geometry();

%----- Stiffness matrix K and load vector f ---------------------

K=zeros(12);
%Force in kN
%options Array contains nodal forces in [DOF4 DOF8] format

f=zeros(12,1);

if (isempty(options))
%no options provided therefore use defaults
f(4)=-450; f(8)=-450;

else
%options provided therefore use specified loads
f(4) = options(1)*-1; f(8) = options(2)*-1;

end

%----- Assemble Ke into K ---------------------------------------

for i=1:10
%passing ep values for each element (E is constant, A is variable)
ep=[E A(i)];
Ke=bar2e(Ex(i,:),Ey(i,:),ep);
K=assem(Edof(i,:),K,Ke);

end;

%----- Solve the system of equations ----------------------------

boundaryConditions = [9 0;10 0;11 0;12 0];
[a,Q]=solveq(K,f,boundaryConditions);

%----- Element forces ---

Ed=extract(Edof,a);

% Preallocating the N array, else it will grow incrementally...
N=zeros(10,1, ’double’);

for i=1:10
ep=[E A(i)];
N(i,:)=bar2s(Ex(i,:),Ey(i,:),ep,Ed(i,:)); %(kN)

end

%----- Element stresses ---

O = N./A; %kN/m^2

%----- Element weight ---

%Length = sqrt((x2-x1)+(y2-y1))
L = sqrt((Ex(:,2) - Ex(:,1)).^2 + (Ey(:,2) - Ey(:,1)).^2); %(m)

78

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

%Weight = Density * Volume = Density * Length * Area
W = D.*A.*L; %(kg)

%----- Graph the structure --------------------------------------
if (popNum == 1)

%Draw the displacements if this is the first x members of the population

figure(1), clf, axis(’equal’), hold on, axis off
maxDisp = num2str(round(max(a)*1000)); %mm
title([’Truss FEM Model (maximum displacement = ’, maxDisp, ’mm), Scaling Factor of

10’], ’FontSize’, 10);
%draw original and annotate with element numbers
plotpar=[2 1 0];
elnum=Edof(:,1);
eldraw2(Ex,Ey,plotpar,elnum);

%draw deformed
plotpar=[1 2 1];
eldisp2(Ex,Ey,Ed,plotpar, 10);

end;

%---------------------------- end -------------------------------

79

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

E.1.3 /includes/getCALFEMtruss_geometry.m

%% getCALFEMtruss_geometry: Static function providing Geometry for 10 element truss
example in Ghasemi et al.

% Written by: Gavin Reynolds, 2008-2009
function [Edof, Ex, Ey]=getCALFEMtruss_geometry()
%This static data has been moved to an include to allow for access
%to geometry data without global variables or duplicating it in code

%----- Topology matrix Edof -------------------------------------

%----- Num A_Dof1 A_Dof2 B_Dof1 B_Dof2
Edof= [1 9 10 5 6;

2 5 6 1 2;
3 11 12 7 8;
4 7 8 3 4;
5 7 8 5 6;
6 3 4 1 2;
7 9 10 7 8;
8 11 12 5 6;
9 5 6 3 4;
10 7 8 1 2];

%----- Element coordinates --------------------------------------

% Using a global coordinate matrix, a global topology matrix and coordxtr
% to get Ex and Ey

Coord= [18 9;
18 0;
9 9;
9 0;
0 9;
0 0];

Dof=[1 2;
3 4;
5 6;
7 8;
9 10;
11 12];

[Ex,Ey]=coordxtr(Edof,Coord,Dof,2);

80

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

E.1.4 /includes/getCALFEMtruss_sectionProperties.m

%% getCALFEMtrusssectionProperties: Provides section properties specified by the
bitstring of the individual provided

% Written by: Gavin Reynolds, 2008-2009
function [elementArray] = getCALFEMtruss_sectionProperties(individual, options)

% Preallocating the elementArray, else it will grow incrementally...
elementArray=cell(10, 5);

for elementNum=1:10
b = elementNum*2;
a = b - (2-1);

%Original method:
% Not a particularly elegant way of doing this...
% elementString = regexprep(num2str(individual(1, a:b)),’[^01]’,’’);
% crossSectionNum = bin2dec(elementString) + 1;

%better way of doing this...
% on average more than halves the execution time, the num2str matlab function is

incredibly
% slow for that it has to do and was a major performance bottleneck. using sprintf

instead.
crossSectionNum = bin2dec(sprintf(’%-1d’,individual(a:b))) + 1;

%% populate the array of cross-section areas via the structural lookup
%All sections below are Corus Celsius 355 CHS, conforming to
%(EN10210:2006, Part 1: S355J2H).
% A: Area (cm^2)
% I: Moment of Inertia/Second Moment of area (cm^4)
% r: Radius of gyration (cm)
% D: Diameter of the section (mm)
switch crossSectionNum

case 1
%406.4 x 8.0 CHS
A = 100.0;
I = 19874;
r = 14.1;
D = 406.4;
desc = ’406.4 x 8.0 CHS’;
crossSectionNum = 1;

case 2
%355.6 x 8.0 CHS
A = 87.4;
I = 13201;
r = 12.3;
D = 355.6;
desc = ’355.6 x 8.0 CHS’;
crossSectionNum = 2;

case 3
%219.1 x 6.3 CHS
A = 42.1;
I = 2386;
r = 7.53;
D = 219.1;
desc = ’219.1 x 6.3 CHS’;
crossSectionNum = 3;

case 4
%114.3 x 3.2 CHS
A = 11.2;
I = 172.0;
r = 3.93;
D = 114.3;
desc = ’114.3 x 3.2 CHS’;
crossSectionNum = 4;

end;

%Unit conversions from cm based units to m
I = I * 1e-8; % (cm^4 to m^4)
A = A * 1e-4; % (cm^2 to m^2)
r = r * 1e-2; % (cm to m)
D = D * 1e-3; % (mm to m)

elementArray(elementNum,1) = {A};
elementArray(elementNum,2) = {I};

81

E.1 Ten Bar Truss E PROBLEM SPECIFIC MATLAB CODE

elementArray(elementNum,3) = {r};
elementArray(elementNum,4) = {D};
elementArray(elementNum,5) = {desc};
elementArray(elementNum,6) = {crossSectionNum};

end;

82

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

E.2 Simply Supported Beam

E.2.1 /fitness/fitness_Beam.m

%% fitness_Beam: Returns an objective fitness value for the supplied individual beam
design

% Written by: Gavin Reynolds, 2008-2009
function [fitness] = fitness_Beam(individual, popNum, options)

[sectionProperties] = getCALFEMbeam_sectionProperties(individual, options);
b = sectionProperties(1,1);
h = sectionProperties(1,2);

if (b == 0 || h == 0)
fitness = 0;
return

end

[a, Q, es, W, D, L]=solver_CALFEMbeam(b,h,popNum, options);

%es is cell array of individual element [N V M];

elementNVMArray = cell2mat(es);
elementMArray = elementNVMArray(:,3);
maxM = max(abs(elementMArray));

%% Reinforcement

[rebarFitness, numBars, barDiameter, maxMomentCapacityFitness] =
getCALFEMbeam_reinforcement(b,h,maxM);

if (rebarFitness == 0)
%Reinforcement solution does not exist
fitness = 0;
return;

end;

%% Plastic Moment
%Mp = (b*h^2)/4*yieldStress
%yield stress = say, 30MPa = 30e6 kN/m2
yieldStress = 30e6;
Mp = (b*h^2)/4*yieldStress; %kNm

plasticMomentFitness = 1 - (maxM/Mp);
if (plasticMomentFitness < 0)

plasticMomentFitness = 0;
end

%% Displacement limit
%Say use two limits, approximately ULS and SLS?
%Displacements over ULS limit penalised severely.
%Displacements between SLS and ULS limits penalised.
%Displacements under SLS limit OK.

%using BS8110, limiting deflection to span/250 and span/500, Cl3.4.6.3

if (numel(options) == 0)
L = 9;

else
L = options(5);

end

%Deflection limits stated in BS8110 CL 4.3.6.3
ulsDisplacementLimit = L/250;
slsDisplacementLimit = L/500;

maxDisplacement = max(abs(a));

if (maxDisplacement <= slsDisplacementLimit)
displacementFitness = 1.0;

elseif (maxDisplacement > slsDisplacementLimit && maxDisplacement < ulsDisplacementLimit
)
displacementFitness = (ulsDisplacementLimit - maxDisplacement)/slsDisplacementLimit;

83

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

else
displacementFitness = 0;

end;

%% Weight Fitness

if (numel(options) == 0)
%maxh = 1.5;
%maxb = 1.5;

%weightConstant = D * maxh * maxb; %W=DA = 2400 * 1.5 * 1.5 = 48600
%weightConstant = ceil(weightConstant/1000)*1000; % rounded upwards to nearest

1,000;
weightConstant = 6000;

else
maxh = options(2);
maxb = options(4);
weightConstant = ceil(D * maxh * maxb/1000)*1000; % W=DAL rounded upwards to nearest

1,000;
end

weightFitness = weightConstant - W;

%% Fitness calculation
fitness = weightFitness * displacementFitness * plasticMomentFitness *

maxMomentCapacityFitness * rebarFitness;

end

84

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

E.2.2 /solvers/solver_CALFEMbeam.m

%% CALFEM Beam solver, adapted from CALFEM example exs3
% Adapted and developed by: Gavin Reynolds, 2008-2009
function [a, Q, es, W, D, L]=solver_CALFEMbeam(b,h,popNum,options)
%Finite element model of concrete beam (model of 3 finite elements)
% return a - Displacements (m)
% return Q - Reactions (kN)
% return es - [N V M] array for each finite element
% return W - Weight per unit length (kg/m)
% return L - Length of beam (m)

%----- Setup --

%Concrete Young’s Modulus is 30GPa = 30e9 N/m2 = 30e6 kN/m2
E = 30e6;
% Concrete Density is 2400 kg/m3 => Weight = Density * Volume
D = 2400;

%Number of finite elements to use for the model
numElements = 10;

if (numel(options) == 0)
L = 9;

else
L = options(5);

end

elementSize = L/numElements;

%----- Topology ---

% Edof=[1 1 2 3 4 5 6;
% 2 4 5 6 7 8 9;
% 3 7 8 9 10 11 12];

Edof = zeros(numElements,7);

for i = 1:numElements
Edof(i,:) = [i (i-1)*3+1 (i-1)*3+2 (i-1)*3+3 (i-1)*3+4 (i-1)*3+5 (i-1)*3+6];

end;
numDofs = Edof(end:end);
%----- Stiffness matrix K and load vector f ---------------------

K=zeros(numDofs); f=zeros(numDofs,1);

if (numel(options) == 0)
%use default loads
f(5)=-1000; f(8)=-1000; %kN

else
%options provided therefore use specified loads
%loads are specified in pairs of values, a location & a load.
%locations are not necessarily on FEM nodal points
numLoadPairs = (numel(options)-5)/2;

for i = 1:numLoadPairs
location = options(6+(i-1)*2);

%sign convention on input is downward load is positive, therefore,
%reverse sign for CALFEM
loadAtLocation = options(7+(i-1)*2) * -1;

%workout where on the beam the load is placed, in terms of finite
%elements i.e. 3.25 indicates between element 3 and 4, 25% of
%finite element length from node 3.
nodalLocation = location/elementSize + 1;

%convention for each element is working "left to right"
%distributes load proportionally to LH & RHS nodes,
% (or directly onto the appropriate node if load is exactly on an FEM node)
proportionLeft = nodalLocation - floor(nodalLocation);
proportionRight = 1 - proportionLeft;

leftNode = floor(nodalLocation);

85

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

verticalDofAtLeft = 2 + (leftNode-1)*3;
verticalDofAtRight = verticalDofAtLeft + 3;

f(verticalDofAtLeft) = f(verticalDofAtLeft) + loadAtLocation*proportionLeft;
f(verticalDofAtRight) = f(verticalDofAtRight) + loadAtLocation*proportionRight;

end

end

%----- Element stiffness matrices ------------------------------

A=b*h; I=(b*h^3)/12; ep=[E A I];
ex=[0 elementSize]; ey=[0 0];

Ke=beam2e(ex,ey,ep);

%----- Assemble Ke into K ---------------------------------------

K=assem(Edof,K,Ke);

%----- Solve the system of equations and compute reactions ------

verticalDofAtRHSupport = numDofs-1;
bc=[1 0; 2 0; verticalDofAtRHSupport 0];

[a,Q]=solveq(K,f,bc);

%----- Section forces ---

Ed=extract(Edof,a);

for i = 1:numElements
es{i,:}= beam2s(ex,ey,ep,Ed(i,:));

end

%es = [N V M];

%----- Weight- --

%Weight per unit length = Density * Volume = Density * Area
W = D.*A; %(kg)

%----- Graph the structure --------------------------------------
if (popNum == 1)

figure(1), clf, axis(’equal’), hold on, axis off
maxDisp = num2str(round(max(a)*1000)); %mm
title([’Beam FEM Model (maximum displacement = ’, maxDisp, ’mm), Scaling Factor of

10’], ’FontSize’, 10);
scalingFactor = 10;

%need to get the verticaldisplacements corresponding
%to the vertical displacements of the nodes.
numNodes = numElements+1;
for i=1:(numNodes)

X(:,i) = elementSize * (i-1);

verticalDOFForNode = 2+3*(i-1);
Y(:,i) = a(verticalDOFForNode) * scalingFactor;

end;

line(X,Y);
end;
%------------------------ end -----------------------------------

86

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

E.2.3 /includes/getCALFEMbeam_sectionProperties.m

%% getCALFEMbeam_sectionProperties: Provides section size specified by the bitstring of
the individual provided

% Written by: Gavin Reynolds, 2008-2009
function [sectionProperties] = getCALFEMbeam_sectionProperties(individual, options)
%2^8 possible breadths = 256
%2^8 possible depths = 256
%approximately to 5mm for the default max & min dimensions

if (numel(options) == 0)
%default case
minh = 0;
maxh = 1.5;
minb = 0;
maxb = 1.5;

else
%use specified max & min dimensions
minh = options(1);
maxh = options(2);
minb = options(3);
maxb = options(4);

end

heightInterval = (maxh-minh)/256;
breadthInterval = (maxb-minb)/256;

breadthNum = (bin2dec(sprintf(’%-1d’,individual(1:8))));
heightNum = (bin2dec(sprintf(’%-1d’,individual(9:16))));

%round upwards to nearest 10mm
b = ceil(breadthNum * breadthInterval/ 0.01)*0.01 + minb;
h = ceil(heightNum * heightInterval/ 0.01)*0.01 + minh;

%returning as an array of b & h to stay consistent with the number of variables
%returned by the truss section properties include, as the GA code is
%generic so don’t want to get into handling special cases etc in the
%main GA code

sectionProperties = [b,h];

87

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

E.2.4 /includes/getCALFEMbeam_reinforcement.m

% getCALFEMbeam_reinforcement: Get CALFEM beam reinforcement properties
% Written by: Gavin Reynolds, 2008-2009
function [rebarFitness, numBars, barDiameter, maxMomentCapacityFitness, d,

barCentertoCenterSpacing, linkSize, coverToLink] = getCALFEMbeam_reinforcement(b,h,
maxM)

minSpacing = 25;
linkSize = 16;
coverToLink = 25;
avaliableBars = [16; 20; 25; 32; 40;]; %mm

%need to guess at bar diameter to get cover distance, taking mean of
%avaliable bars as a rough estimate?

coverToRebarGuess = ceil((coverToLink + linkSize + mean(avaliableBars)/2) / 10)*10; %mm
d = h - coverToRebarGuess/1000; %m

fcu = 40; %kN/m2
fy = 460;

%Mr = 0.156b*d^2*fcu
Mr = 0.156 * (b*1000) * (d*1000)^2 * fcu / 1e6; %kNm

%initially assume reinforcement design to be ok, unless proved otherwise
reinforcementDesignCalcsOK = true;

maxMomentCapacityFitness = 1/(maxM/Mr);
if (maxMomentCapacityFitness > 1)

maxMomentCapacityFitness = 1;
end;

%% Do reinforcement design
K = maxM*1e6/((b*1000)*(d*1000)^2*fcu);

%if coefficient K is greater than 0.156 then design is invalid
if (K >= 0.156)

reinforcementDesignCalcsOK = false;
end;
z = (0.5+sqrt(0.25-K/0.9))*d; %m
%if lever arm exceeds limit of 0.95d, then design is invalid
if (z >= 0.95*d)

reinforcementDesignCalcsOK = false;
end;
x = (d-z)/0.45; %m

%if neutral axis is outside these limits then design is invalid
if (x <= 0.1*d || x >= 0.5*d)

reinforcementDesignCalcsOK = false;
end;

%if reinforcement design has failed for any reason, return variables are 0
if (reinforcementDesignCalcsOK == false)

rebarFitness = 0; numBars = 0; barDiameter = 0; maxMomentCapacityFitness = 0; d = 0;
barCentertoCenterSpacing =0;

return;
end;

As = maxM*1e6/(0.95*fy*z*1000); %mm2
minAs = 0.13/100*(b*1000)*(h*1000);

%if the required area of steel is less than the minimum steel required for
%the section size, then use the minimum value
if (As < minAs)

As = minAs;
end;

%% Get required num bars & diameters

loop = true;
j = 1;
numBars = 1;
sectionWidth = (b*1000);
numAvaliableBars = numel(avaliableBars);
while (loop == true)

88

E.2 Simply Supported Beam E PROBLEM SPECIFIC MATLAB CODE

barDiameter = avaliableBars(j);
barArea = pi()*(barDiameter/2)^2;
numBars = ceil(As/barArea);

requiredWidth = numBars * barDiameter + 2*linkSize + (numBars + 1) * minSpacing; %mm

if (requiredWidth <= sectionWidth)
%rebar fits the section
loop = false;
rebarSolutionFound = true;

else
%try the next size of bar up
j = j + 1;
if (j > numAvaliableBars)

loop = false;
rebarSolutionFound = false;

end;
end;

end;

%check coverToRebar was suitable?
coverToRebar = (coverToLink + linkSize + barDiameter/2);

%calculate the center to center spacing to get the rebar equi-distant get space
totalWidthofSteel = (b*1000 - (2*coverToLink + 2*linkSize + numBars*barDiameter));
barCentertoCenterSpacing = totalWidthofSteel/(numBars - 1) + barDiameter; %mm

rebarFitness = 0;

if (coverToRebar <= coverToRebarGuess)
rebarFitness = rebarFitness + 0.25;
disp(’Rebar Cover Guess OK’);

end;

if (barCentertoCenterSpacing >= minSpacing)
rebarFitness = rebarFitness + 0.25;
disp(’Bar Spacing OK’);

end;

if (rebarSolutionFound == true && rebarFitness > 0)
%OK
disp(’Rebar Solution FOUND’);
rebarFitness = rebarFitness + 0.50;

end;

end

89

F MISC. MATLAB CODE

F Misc. MATLAB Code

• Figures

– create_FitnessGraph.m (page 90): Graphs the best and average fitness
of the population over generations.

– create_TrussDiagram.m (page 92): Generates the visualisation of the fit-
test truss design.

– create_BeamDiagram.m (page 94): Generates the visualisation of the fit-
test beam design.

• Search Space Mapping

– fitnessMap.m (page 95): A wrapper for the fitness functions, used to ge-
nerate fitness landscape plots and also time how long it takes to evaluate
the fitness of every possible combination.

F.1 Figures

F.1.1 /figures/create_FitnessGraph.m

%% create_FitnessGraph: Creates a fitness over iterations graph
% Written by: Gavin Reynolds, 2008-2009
function create_FitnessGraph(iterationBestFitnessArray, iterationAverageFitnessArray,

gaParameters, results, problemType)
%% Create the fitness graph
% Create figure
figure2 = figure(2);
clf;
% Create axes
axes1 = axes(’Parent’,figure2,’YGrid’,’on’,’XGrid’,’on’,’Position’,[0.11 0.10 0.70

0.80]);
box(’on’);
hold(’all’);

numIterations = results(1);
x = (1:numIterations)’;
% Create plot
plot(x, iterationBestFitnessArray(:,1),’-b’);
plot(x, iterationAverageFitnessArray(:,1),’--g’);
titleText = [’Best & Average Fitness over Iterations: ’, problemType];

% Create title
title(titleText,’FontSize’,12);

% Create xlabel
xlabel(’Iterations’);

% Create ylabel
ylabel(’Fitness Value’);

% Create light
light(’Parent’,axes1,’Position’,[-0.03 1.0 0.001]);

populationSize = gaParameters(1);
mutationPercent = gaParameters(2)*100;
elitismPercent = gaParameters(3)*100;
mutateElite = gaParameters(4);

countSinceLastFitnessImprovement = results(2);
lastFitnessImprovement = numIterations - countSinceLastFitnessImprovement;

maxFitness = results(3);

90

F.1 Figures F MISC. MATLAB CODE

executionTime = results(4);

% Create textbox
solutionDesc = {’Population:’, populationSize, ’Mutation %:’, mutationPercent, ’Mutate

Elite:’, mutateElite, ’Elitism %:’, elitismPercent, ’’, ’Iterations:’,
numIterations, ’Last fitness improvement:’, lastFitnessImprovement, ’Max Fitness:’,
maxFitness, ’’, ’Time Elapsed:’, executionTime};

annotation(figure2,’textbox’,[0.82 0.15 0.17 0.70],’String’, solutionDesc, ’FitBoxToText
’,’off’);

end

91

F.1 Figures F MISC. MATLAB CODE

F.1.2 /figures/create_TrussDiagram.m

%% create_TrussDiagram
% Written by: Gavin Reynolds, 2008-2009
function create_TrussDiagram(fittestSolution, options)
[Edof, Ex, Ey]= getCALFEMtruss_geometry();

% Create figure
figure3 = figure(3); clf, axis(’equal’), hold on, axis off

sectionDescs = cell2mat(fittestSolution(:,5));
sectionNums = cell2mat(fittestSolution(:,6));

% get weight
[a,Q,N,O,W]=solver_CALFEMtruss(fittestSolution, 0, options);

totalWeight = [num2str(round(sum(W))) ’ kg’];

uniqueSectionNums = unique(sectionNums);
numSectionsUsed = numel(uniqueSectionNums);

for i=1:numSectionsUsed

j = uniqueSectionNums(i);

y1 = 0.15 + 0.1*(j-1)*2;
y2 = y1 + 0.1;

switch j
case 1

Colour = [1 0 0];
case 2

Colour = [0 1 0];
case 3

Colour = [0 0 1];
case 4

Colour = [0 0 0];
end;

% Create line
annotation(figure3,’line’,[y1 y2],[0.95 0.95],’Color’,Colour);

end;

% Create Title textboxes
annotation(figure3,’textbox’,[0 0.9 1.0 0.11],...

’String’,{’Fittest Design’},...
’HorizontalAlignment’,’center’,...
’FontSize’,12,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’);

annotation(figure3,’textbox’,[0 0.01 1.0 0.11],...
’String’,{’Total Weight:’, totalWeight},...
’HorizontalAlignment’,’center’,...
’FontSize’,10,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’);

for i=1:numSectionsUsed

j = uniqueSectionNums(i);

left = 0.135 + 0.1*(j-1)*2;

sectionDescRow = find(sectionNums ==j, 1, ’first’);
sectionDesc = sectionDescs(sectionDescRow,:);

% Create textbox
annotation(figure3,’textbox’,[left 0.88 0.13 0.07],...

’String’,{sectionDesc},...
’HorizontalAlignment’,’center’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’);

92

F.1 Figures F MISC. MATLAB CODE

end;

elementDiameters = cell2mat(fittestSolution(:,4));
%Find the minimum element diameter
minElementDiameter = min(elementDiameters);

numElements=10;

x=Ex’;
y=Ey’;

for i=1:numElements
%based the line width of the element
lineWidth = elementDiameters(i)/minElementDiameter;
elementNumber = cell2mat(fittestSolution(i,6));
xe = x(:,i); ye = y(:,i);
switch elementNumber

case 1
plotStyle = ’-ro’;

case 2
plotStyle = ’-go’;

case 3
plotStyle = ’-bo’;

case 4
plotStyle = ’-ko’;

end;

plot(xe,ye,plotStyle,’LineWidth’,lineWidth)
end

93

F.1 Figures F MISC. MATLAB CODE

F.1.3 /figures/create_BeamDiagram.m

%% create_BeamDiagram
% Written by: Gavin Reynolds, 2008-2009
function create_BeamDiagram(fittestSolution, options)

b = fittestSolution(1,1);
h = fittestSolution(1,2);

[a, Q, es, W]=solver_CALFEMbeam(b,h,0, options);

totalWeight = [num2str(round(W)) ’ kg’];

%es is cell array of individual element [N V M];
elementNVMArray = cell2mat(es);
elementMArray = elementNVMArray(:,3);
maxM = max(abs(max(elementMArray)));

[rebarOK, numBars, barDiameter, maxMomentCapacityFitness, d, barHorizontalSpacing,
linkSize, coverToLink] = getCALFEMbeam_reinforcement(b,h,maxM);

figure3 = figure(3); clf, axis(’equal’), hold on, axis off

% Create Title textbox
sectionDesc = [’Fittest Design: Section = ’, num2str(b), ’x’, num2str(h), ’m , Rebar = ’

, num2str(numBars),’T’, num2str(barDiameter), ’, Effective Depth = ’, num2str(d), ’
m, Rebar c/c Spacing = ’, num2str(floor(barHorizontalSpacing)), ’mm’];

annotation(figure3,’textbox’,[0 0.9 1.0 0.11],...
’String’,{sectionDesc},...
’HorizontalAlignment’,’center’,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’);

annotation(figure3,’textbox’,[0 0.01 1.0 0.11],...
’String’,{’Weight per m:’ totalWeight},...
’HorizontalAlignment’,’center’,...
’FontSize’,10,...
’FitBoxToText’,’off’,...
’LineStyle’,’none’);

rectangle(’Position’,[0,0,b,h],’LineWidth’,2)

% there seriously isn’t a circle plot function... using one from Mathworks File Exchange
%http://www.mathworks.com/matlabcentral/fileexchange/2876
if (numBars == 1)

drawCircle([b/2,h-d],barDiameter/1000/2,1000);
else

for i=1:numBars
rebarHorizontalCenter = (coverToLink + linkSize + barHorizontalSpacing*(i-1) +

barDiameter/2)/1000; %m
drawCircle([rebarHorizontalCenter,h-d],barDiameter/1000/2,1000);

end
end

end

94

F.2 Search Space Mapping F MISC. MATLAB CODE

F.2 Search Space Mapping

F.2.1 /test/fitnessMap.m

%% fitnessMap: A wrapper for the fitness functions, to generate fitness landscape plots.
% Also times how long it takes to evaluate the fitness of every possible combination.
% Written by: Gavin Reynolds, 2008-2009
function [fitnessArray, t] = fitnessMap(problemType)

tic;

%% Set fitness function based on problem type
switch problemType

case ’Ten Bar Truss’
fitnessFunction = @fitness_Truss;
bitstringLength = 20;
options = [];

case ’Simply Supported Beam’
fitnessFunction = @fitness_Beam;
bitstringLength = 16;
options = [];

otherwise
disp(’Unknown problem type’)
return

end

%% Calculate fitness for generated individuals
numIndividuals = 2^bitstringLength;
fitnessArray = zeros(numIndividuals,1, ’double’);

for i = 0:numIndividuals
disp(’===========================’)
disp(’Individual:’)
disp(i)
disp(’===========================’)
%individual = dec2binvec(i, bitstringLength);

binaryString = dec2bin(i,bitstringLength);
%Convention, LSB is LHS, MSB is RHS.
individual = logical(str2num([fliplr(binaryString);blanks(length(binaryString))]’)’)

;

fitnessArray(i+1) = fitnessFunction(individual, 0, options);
end

%% Save the results
t = toc;
assignin(’base’, ’fitnessTime’, t);

assignin(’base’, ’fitnessArray’, fitnessArray);
dlmwrite ([problemType ’_fitness_map.csv’], fitnessArray);

sortedFitnessArray = sort(fitnessArray);
assignin(’base’, ’sortedFitnessArray’,sortedFitnessArray);

95

	I Introduction
	Genetic Algorithms
	Crossover
	Mutation

	Development Software
	MATLAB
	CALFEM

	Objectives

	II Development
	The Genetic Algorithm
	Encoding
	Discrete Variables
	Continuous Variables

	Fitness Functions
	Selection
	Termination Conditions
	Expanded GA Flowchart

	Ten Bar Truss
	Fitness Function
	Weight Fitness
	Displacement Fitness
	Stress Fitness
	Element Force Fitness

	CALFEM Solver

	Reinforced Concrete Beam
	Fitness Function
	CALFEM Solver

	Graphical User Interface
	Flexibility of Input

	III Results
	Effect of Genetic Algorithm Parameters
	Population Size
	Mutation
	Elitism
	Mutation of Elites

	Ten Bar Truss Results
	Fitness Function Testing
	Search Space

	Simply Supported Beam Results
	Fitness Function Testing
	Search Space

	IV Discussion & Conclusions
	Discussion
	Conclusions
	Detailed Conclusions
	General Conclusions
	Future perspectives

	V References
	References

	VI Appendices
	Annotated GA Flowchart
	Ten Bar Truss weight fitness calculation
	Typical Visualisations
	Truss
	Beam

	GA MATLAB Code
	/ga/GA_Controller.m
	/ga/GA_Crossover.m
	/ga/GA_Mutation.m
	/ga/GA_Elitism.m
	/ga/GA_SelectionRouletteWheel.m

	Problem Specific MATLAB Code
	Ten Bar Truss
	/fitness/fitness_Truss.m
	/solvers/solver_CALFEMtruss.m
	/includes/getCALFEMtruss_geometry.m
	/includes/getCALFEMtruss_sectionProperties.m

	Simply Supported Beam
	/fitness/fitness_Beam.m
	/solvers/solver_CALFEMbeam.m
	/includes/getCALFEMbeam_sectionProperties.m
	/includes/getCALFEMbeam_reinforcement.m

	Misc. MATLAB Code
	Figures
	/figures/create_FitnessGraph.m
	/figures/create_TrussDiagram.m
	/figures/create_BeamDiagram.m

	Search Space Mapping
	/test/fitnessMap.m

